Publikation: Combinatorial network abstraction by trees and distances
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We draw attention to combinatorial network abstraction problems. These are specified by a class P of pattern graphs and a real-valued similarity measure Q that is based on certain graph properties. For a fixed pattern P and similarity measure Q, the optimization task on a given graph G is to find a subgraph G' subset of G which belongs to P and minimizes Q(G, G'). In this work, we consider this problem for the natural and somewhat general case of trees and distance-based similarity measures. In particular, we systematically study spanning trees of graphs that minimize distances, approximate distances, and approximate closeness-centrality with respect to standard vector- and matrix-norms. Complexity analysis within a unifying framework shows that all considered variants of the problem are NP-complete, except for the case of distance-minimization with respect to the norm L-infinity. If a subset of edges can be "forced" into the spanning tree, no polynomial-time constant-factor approximation algorithmexists for the distance-approximation problems unless P = NP.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ECKHARDT, Stefan, Sven KOSUB, Moritz G. MAASS, Hanjo TÄUBIG, Sebastian WERNICKE, 2008. Combinatorial network abstraction by trees and distances. In: Theoretical Computer Science. 2008, 407(1/3), pp. 1-20. Available under: doi: 10.1016/j.tcs.2008.03.037BibTex
@article{Eckhardt2008Combi-3030, year={2008}, doi={10.1016/j.tcs.2008.03.037}, title={Combinatorial network abstraction by trees and distances}, number={1/3}, volume={407}, journal={Theoretical Computer Science}, pages={1--20}, author={Eckhardt, Stefan and Kosub, Sven and Maaß, Moritz G. and Täubig, Hanjo and Wernicke, Sebastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/3030"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:50Z</dc:date> <dcterms:title>Combinatorial network abstraction by trees and distances</dcterms:title> <dc:language>eng</dc:language> <dc:creator>Eckhardt, Stefan</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:creator>Kosub, Sven</dc:creator> <dc:creator>Täubig, Hanjo</dc:creator> <dc:contributor>Wernicke, Sebastian</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Maaß, Moritz G.</dc:creator> <dc:contributor>Eckhardt, Stefan</dc:contributor> <dc:creator>Wernicke, Sebastian</dc:creator> <dcterms:bibliographicCitation>Publ. in: Theoretical Computer Science, 407 (2008), 1/3, pp. 1-20</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">We draw attention to combinatorial network abstraction problems. These are specified by a class P of pattern graphs and a real-valued similarity measure Q that is based on certain graph properties. For a fixed pattern P and similarity measure Q, the optimization task on a given graph G is to find a subgraph G' subset of G which belongs to P and minimizes Q(G, G'). In this work, we consider this problem for the natural and somewhat general case of trees and distance-based similarity measures. In particular, we systematically study spanning trees of graphs that minimize distances, approximate distances, and approximate closeness-centrality with respect to standard vector- and matrix-norms. Complexity analysis within a unifying framework shows that all considered variants of the problem are NP-complete, except for the case of distance-minimization with respect to the norm L-infinity. If a subset of edges can be "forced" into the spanning tree, no polynomial-time constant-factor approximation algorithmexists for the distance-approximation problems unless P = NP.</dcterms:abstract> <dc:contributor>Kosub, Sven</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/3030"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T10:15:50Z</dcterms:available> <dc:contributor>Täubig, Hanjo</dc:contributor> <dc:contributor>Maaß, Moritz G.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2008</dcterms:issued> </rdf:Description> </rdf:RDF>