Publikation: Beyond the horizon: immersive developments for animal ecology research
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
More diverse data on animal ecology are now available. This “data deluge” presents challenges for both biologists and computer scientists; however, it also creates opportunities to improve analysis and answer more holistic research questions. We aim to increase awareness of the current opportunity for interdisciplinary research between animal ecology researchers and computer scientists. Immersive analytics (IA) is an emerging research field in which investigations are performed into how immersive technologies, such as large display walls and virtual reality and augmented reality devices, can be used to improve data analysis, outcomes, and communication. These investigations have the potential to reduce the analysis effort and widen the range of questions that can be addressed. We propose that biologists and computer scientists combine their efforts to lay the foundation for IA in animal ecology research. We discuss the potential and the challenges and outline a path toward a structured approach. We imagine that a joint effort would combine the strengths and expertise of both communities, leading to a well-defined research agenda and design space, practical guidelines, robust and reusable software frameworks, reduced analysis effort, and better comparability of results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZHANG, Ying, Karsten KLEIN, Falk SCHREIBER, Kamran SAFI, 2023. Beyond the horizon: immersive developments for animal ecology research. In: Visual Computing for Industry, Biomedicine, and Art. Springer Science and Business Media LLC. 2023, 6(1), 11. eISSN 2524-4442. Available under: doi: 10.1186/s42492-023-00138-3BibTex
@article{Zhang2023-06-20Beyon-67291, year={2023}, doi={10.1186/s42492-023-00138-3}, title={Beyond the horizon: immersive developments for animal ecology research}, number={1}, volume={6}, journal={Visual Computing for Industry, Biomedicine, and Art}, author={Zhang, Ying and Klein, Karsten and Schreiber, Falk and Safi, Kamran}, note={Article Number: 11} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67291"> <dcterms:title>Beyond the horizon: immersive developments for animal ecology research</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-03T13:25:25Z</dc:date> <dcterms:issued>2023-06-20</dcterms:issued> <dc:contributor>Zhang, Ying</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Schreiber, Falk</dc:creator> <dc:creator>Zhang, Ying</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Klein, Karsten</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67291/1/Zhang_2-gohf33x1zy756.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Safi, Kamran</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67291"/> <dc:contributor>Schreiber, Falk</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67291/1/Zhang_2-gohf33x1zy756.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-03T13:25:25Z</dcterms:available> <dcterms:abstract>More diverse data on animal ecology are now available. This “data deluge” presents challenges for both biologists and computer scientists; however, it also creates opportunities to improve analysis and answer more holistic research questions. We aim to increase awareness of the current opportunity for interdisciplinary research between animal ecology researchers and computer scientists. Immersive analytics (IA) is an emerging research field in which investigations are performed into how immersive technologies, such as large display walls and virtual reality and augmented reality devices, can be used to improve data analysis, outcomes, and communication. These investigations have the potential to reduce the analysis effort and widen the range of questions that can be addressed. We propose that biologists and computer scientists combine their efforts to lay the foundation for IA in animal ecology research. We discuss the potential and the challenges and outline a path toward a structured approach. We imagine that a joint effort would combine the strengths and expertise of both communities, leading to a well-defined research agenda and design space, practical guidelines, robust and reusable software frameworks, reduced analysis effort, and better comparability of results.</dcterms:abstract> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Klein, Karsten</dc:creator> <dc:creator>Safi, Kamran</dc:creator> </rdf:Description> </rdf:RDF>