Publikation:

Choosing a sensible cut-off point : assessing the impact of uncertainty in a social network on the performance of NBDA

Lade...
Vorschaubild

Dateien

Wild_2-ggn2ccuii9kt5.pdf
Wild_2-ggn2ccuii9kt5.pdfGröße: 1.25 MBDownloads: 219

Datum

2019

Autor:innen

Hoppitt, William

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Primates. Springer. 2019, 60(3), pp. 307-315. ISSN 0032-8332. eISSN 1610-7365. Available under: doi: 10.1007/s10329-018-0693-4

Zusammenfassung

Network-based diffusion analysis (NBDA) has become a widely used tool to detect and quantify social learning in animal populations. NBDA infers social learning if the spread of a novel behavior follows the social network and hence relies on appropriate information on individuals' network connections. Most studies on animal populations, however, lack a complete record of all associations, which creates uncertainty in the social network. To reduce this uncertainty, researchers often use a certain threshold of sightings for the inclusion of animals (which is often arbitrarily chosen), as observational error decreases with increasing numbers of observations. Dropping individuals with only few sightings, however, can lead to information loss in the network if connecting individuals are removed. Hence, there is a trade-off between including as many individuals as possible and having reliable data. We here provide a tool in R that assesses the sensitivity of NBDA to error in the social network given a certain threshold for the inclusion of individuals. It simulates a social learning process through a population and then tests the power of NBDA to reliably detect social learning after introducing observational error into the social network, which is repeated for different thresholds. Our tool can help researchers using NBDA to select a threshold, specific to their data set, that maximizes power to reliably quantify social learning in their study population.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Network-based diffusion analysis, NBDA, Social network, Uncertainty, Social learning

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WILD, Sonja, William HOPPITT, 2019. Choosing a sensible cut-off point : assessing the impact of uncertainty in a social network on the performance of NBDA. In: Primates. Springer. 2019, 60(3), pp. 307-315. ISSN 0032-8332. eISSN 1610-7365. Available under: doi: 10.1007/s10329-018-0693-4
BibTex
@article{Wild2019-05Choos-50870,
  year={2019},
  doi={10.1007/s10329-018-0693-4},
  title={Choosing a sensible cut-off point : assessing the impact of uncertainty in a social network on the performance of NBDA},
  number={3},
  volume={60},
  issn={0032-8332},
  journal={Primates},
  pages={307--315},
  author={Wild, Sonja and Hoppitt, William}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50870">
    <dc:creator>Hoppitt, William</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Wild, Sonja</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:abstract xml:lang="eng">Network-based diffusion analysis (NBDA) has become a widely used tool to detect and quantify social learning in animal populations. NBDA infers social learning if the spread of a novel behavior follows the social network and hence relies on appropriate information on individuals' network connections. Most studies on animal populations, however, lack a complete record of all associations, which creates uncertainty in the social network. To reduce this uncertainty, researchers often use a certain threshold of sightings for the inclusion of animals (which is often arbitrarily chosen), as observational error decreases with increasing numbers of observations. Dropping individuals with only few sightings, however, can lead to information loss in the network if connecting individuals are removed. Hence, there is a trade-off between including as many individuals as possible and having reliable data. We here provide a tool in R that assesses the sensitivity of NBDA to error in the social network given a certain threshold for the inclusion of individuals. It simulates a social learning process through a population and then tests the power of NBDA to reliably detect social learning after introducing observational error into the social network, which is repeated for different thresholds. Our tool can help researchers using NBDA to select a threshold, specific to their data set, that maximizes power to reliably quantify social learning in their study population.</dcterms:abstract>
    <dcterms:issued>2019-05</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-18T05:43:40Z</dcterms:available>
    <dc:creator>Wild, Sonja</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50870/1/Wild_2-ggn2ccuii9kt5.pdf"/>
    <dc:contributor>Hoppitt, William</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50870"/>
    <dcterms:title>Choosing a sensible cut-off point : assessing the impact of uncertainty in a social network on the performance of NBDA</dcterms:title>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-18T05:43:40Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50870/1/Wild_2-ggn2ccuii9kt5.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen