Publikation: Choosing a sensible cut-off point : assessing the impact of uncertainty in a social network on the performance of NBDA
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Network-based diffusion analysis (NBDA) has become a widely used tool to detect and quantify social learning in animal populations. NBDA infers social learning if the spread of a novel behavior follows the social network and hence relies on appropriate information on individuals' network connections. Most studies on animal populations, however, lack a complete record of all associations, which creates uncertainty in the social network. To reduce this uncertainty, researchers often use a certain threshold of sightings for the inclusion of animals (which is often arbitrarily chosen), as observational error decreases with increasing numbers of observations. Dropping individuals with only few sightings, however, can lead to information loss in the network if connecting individuals are removed. Hence, there is a trade-off between including as many individuals as possible and having reliable data. We here provide a tool in R that assesses the sensitivity of NBDA to error in the social network given a certain threshold for the inclusion of individuals. It simulates a social learning process through a population and then tests the power of NBDA to reliably detect social learning after introducing observational error into the social network, which is repeated for different thresholds. Our tool can help researchers using NBDA to select a threshold, specific to their data set, that maximizes power to reliably quantify social learning in their study population.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WILD, Sonja, William HOPPITT, 2019. Choosing a sensible cut-off point : assessing the impact of uncertainty in a social network on the performance of NBDA. In: Primates. Springer. 2019, 60(3), pp. 307-315. ISSN 0032-8332. eISSN 1610-7365. Available under: doi: 10.1007/s10329-018-0693-4BibTex
@article{Wild2019-05Choos-50870, year={2019}, doi={10.1007/s10329-018-0693-4}, title={Choosing a sensible cut-off point : assessing the impact of uncertainty in a social network on the performance of NBDA}, number={3}, volume={60}, issn={0032-8332}, journal={Primates}, pages={307--315}, author={Wild, Sonja and Hoppitt, William} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50870"> <dc:creator>Hoppitt, William</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Wild, Sonja</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:abstract xml:lang="eng">Network-based diffusion analysis (NBDA) has become a widely used tool to detect and quantify social learning in animal populations. NBDA infers social learning if the spread of a novel behavior follows the social network and hence relies on appropriate information on individuals' network connections. Most studies on animal populations, however, lack a complete record of all associations, which creates uncertainty in the social network. To reduce this uncertainty, researchers often use a certain threshold of sightings for the inclusion of animals (which is often arbitrarily chosen), as observational error decreases with increasing numbers of observations. Dropping individuals with only few sightings, however, can lead to information loss in the network if connecting individuals are removed. Hence, there is a trade-off between including as many individuals as possible and having reliable data. We here provide a tool in R that assesses the sensitivity of NBDA to error in the social network given a certain threshold for the inclusion of individuals. It simulates a social learning process through a population and then tests the power of NBDA to reliably detect social learning after introducing observational error into the social network, which is repeated for different thresholds. Our tool can help researchers using NBDA to select a threshold, specific to their data set, that maximizes power to reliably quantify social learning in their study population.</dcterms:abstract> <dcterms:issued>2019-05</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-18T05:43:40Z</dcterms:available> <dc:creator>Wild, Sonja</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50870/1/Wild_2-ggn2ccuii9kt5.pdf"/> <dc:contributor>Hoppitt, William</dc:contributor> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50870"/> <dcterms:title>Choosing a sensible cut-off point : assessing the impact of uncertainty in a social network on the performance of NBDA</dcterms:title> <dc:rights>Attribution 4.0 International</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-18T05:43:40Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50870/1/Wild_2-ggn2ccuii9kt5.pdf"/> </rdf:Description> </rdf:RDF>