Quantum Jumps of Normal Polytopes

Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Bruns, Winfried
Gubeladze, Joseph
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Discrete & Computational Geometry ; 56 (2016), 1. - S. 181-215. - Springer. - ISSN 0179-5376. - eISSN 1432-0444
Zusammenfassung
We introduce a partial order on the set of all normal polytopes in Rd. This poset NPol(d) is a natural discrete counterpart of the continuum of convex compact sets in Rd, ordered by inclusion, and exhibits a remarkably rich combinatorial structure. We derive various arithmetic bounds on elementary relations in NPol(d), called quantum jumps. The existence of extremal objects in NPol(d) is a challenge of number theoretical flavor, leading to interesting classes of normal polytopes: minimal, maximal, spherical. Minimal elements in NPol(5) have played a critical role in disproving various covering conjectures for normal polytopes in the 1990s. Here we report on the first examples of maximal elements in NPol(4) and NPol(5), found by a combination of the developed theory, random generation, and extensive computer search.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Lattice polytope, Normal polytope, Maximal polytope, Quantum jump
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690BRUNS, Winfried, Joseph GUBELADZE, Mateusz MICHALEK, 2016. Quantum Jumps of Normal Polytopes. In: Discrete & Computational Geometry. Springer. 56(1), pp. 181-215. ISSN 0179-5376. eISSN 1432-0444. Available under: doi: 10.1007/s00454-016-9773-7
BibTex
@article{Bruns2016Quant-52322,
  year={2016},
  doi={10.1007/s00454-016-9773-7},
  title={Quantum Jumps of Normal Polytopes},
  number={1},
  volume={56},
  issn={0179-5376},
  journal={Discrete & Computational Geometry},
  pages={181--215},
  author={Bruns, Winfried and Gubeladze, Joseph and Michalek, Mateusz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52322">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-08T12:21:34Z</dc:date>
    <dcterms:abstract xml:lang="eng">We introduce a partial order on the set of all normal polytopes in R&lt;sup&gt;d&lt;/sup&gt;. This poset NPol(d) is a natural discrete counterpart of the continuum of convex compact sets in R&lt;sup&gt;d&lt;/sup&gt;, ordered by inclusion, and exhibits a remarkably rich combinatorial structure. We derive various arithmetic bounds on elementary relations in NPol(d), called quantum jumps. The existence of extremal objects in NPol(d) is a challenge of number theoretical flavor, leading to interesting classes of normal polytopes: minimal, maximal, spherical. Minimal elements in NPol(5) have played a critical role in disproving various covering conjectures for normal polytopes in the 1990s. Here we report on the first examples of maximal elements in NPol(4) and NPol(5), found by a combination of the developed theory, random generation, and extensive computer search.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:issued>2016</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Quantum Jumps of Normal Polytopes</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-08T12:21:34Z</dcterms:available>
    <dc:contributor>Bruns, Winfried</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dc:creator>Gubeladze, Joseph</dc:creator>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Gubeladze, Joseph</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52322"/>
    <dc:creator>Bruns, Winfried</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja