Publikation:

Quantum Jumps of Normal Polytopes

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Bruns, Winfried
Gubeladze, Joseph

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Discrete & Computational Geometry. Springer. 2016, 56(1), pp. 181-215. ISSN 0179-5376. eISSN 1432-0444. Available under: doi: 10.1007/s00454-016-9773-7

Zusammenfassung

We introduce a partial order on the set of all normal polytopes in Rd. This poset NPol(d) is a natural discrete counterpart of the continuum of convex compact sets in Rd, ordered by inclusion, and exhibits a remarkably rich combinatorial structure. We derive various arithmetic bounds on elementary relations in NPol(d), called quantum jumps. The existence of extremal objects in NPol(d) is a challenge of number theoretical flavor, leading to interesting classes of normal polytopes: minimal, maximal, spherical. Minimal elements in NPol(5) have played a critical role in disproving various covering conjectures for normal polytopes in the 1990s. Here we report on the first examples of maximal elements in NPol(4) and NPol(5), found by a combination of the developed theory, random generation, and extensive computer search.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Lattice polytope, Normal polytope, Maximal polytope, Quantum jump

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BRUNS, Winfried, Joseph GUBELADZE, Mateusz MICHALEK, 2016. Quantum Jumps of Normal Polytopes. In: Discrete & Computational Geometry. Springer. 2016, 56(1), pp. 181-215. ISSN 0179-5376. eISSN 1432-0444. Available under: doi: 10.1007/s00454-016-9773-7
BibTex
@article{Bruns2016Quant-52322,
  year={2016},
  doi={10.1007/s00454-016-9773-7},
  title={Quantum Jumps of Normal Polytopes},
  number={1},
  volume={56},
  issn={0179-5376},
  journal={Discrete & Computational Geometry},
  pages={181--215},
  author={Bruns, Winfried and Gubeladze, Joseph and Michalek, Mateusz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52322">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-08T12:21:34Z</dc:date>
    <dcterms:abstract xml:lang="eng">We introduce a partial order on the set of all normal polytopes in R&lt;sup&gt;d&lt;/sup&gt;. This poset NPol(d) is a natural discrete counterpart of the continuum of convex compact sets in R&lt;sup&gt;d&lt;/sup&gt;, ordered by inclusion, and exhibits a remarkably rich combinatorial structure. We derive various arithmetic bounds on elementary relations in NPol(d), called quantum jumps. The existence of extremal objects in NPol(d) is a challenge of number theoretical flavor, leading to interesting classes of normal polytopes: minimal, maximal, spherical. Minimal elements in NPol(5) have played a critical role in disproving various covering conjectures for normal polytopes in the 1990s. Here we report on the first examples of maximal elements in NPol(4) and NPol(5), found by a combination of the developed theory, random generation, and extensive computer search.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:issued>2016</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Quantum Jumps of Normal Polytopes</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-08T12:21:34Z</dcterms:available>
    <dc:contributor>Bruns, Winfried</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dc:creator>Gubeladze, Joseph</dc:creator>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Gubeladze, Joseph</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52322"/>
    <dc:creator>Bruns, Winfried</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen