Quantum Jumps of Normal Polytopes
Quantum Jumps of Normal Polytopes
No Thumbnail Available
Files
There are no files associated with this item.
Date
2016
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Discrete & Computational Geometry ; 56 (2016), 1. - pp. 181-215. - Springer. - ISSN 0179-5376. - eISSN 1432-0444
Abstract
We introduce a partial order on the set of all normal polytopes in Rd. This poset NPol(d) is a natural discrete counterpart of the continuum of convex compact sets in Rd, ordered by inclusion, and exhibits a remarkably rich combinatorial structure. We derive various arithmetic bounds on elementary relations in NPol(d), called quantum jumps. The existence of extremal objects in NPol(d) is a challenge of number theoretical flavor, leading to interesting classes of normal polytopes: minimal, maximal, spherical. Minimal elements in NPol(5) have played a critical role in disproving various covering conjectures for normal polytopes in the 1990s. Here we report on the first examples of maximal elements in NPol(4) and NPol(5), found by a combination of the developed theory, random generation, and extensive computer search.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Lattice polytope, Normal polytope, Maximal polytope, Quantum jump
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
BRUNS, Winfried, Joseph GUBELADZE, Mateusz MICHALEK, 2016. Quantum Jumps of Normal Polytopes. In: Discrete & Computational Geometry. Springer. 56(1), pp. 181-215. ISSN 0179-5376. eISSN 1432-0444. Available under: doi: 10.1007/s00454-016-9773-7BibTex
@article{Bruns2016Quant-52322, year={2016}, doi={10.1007/s00454-016-9773-7}, title={Quantum Jumps of Normal Polytopes}, number={1}, volume={56}, issn={0179-5376}, journal={Discrete & Computational Geometry}, pages={181--215}, author={Bruns, Winfried and Gubeladze, Joseph and Michalek, Mateusz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52322"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-08T12:21:34Z</dc:date> <dcterms:abstract xml:lang="eng">We introduce a partial order on the set of all normal polytopes in R<sup>d</sup>. This poset NPol(d) is a natural discrete counterpart of the continuum of convex compact sets in R<sup>d</sup>, ordered by inclusion, and exhibits a remarkably rich combinatorial structure. We derive various arithmetic bounds on elementary relations in NPol(d), called quantum jumps. The existence of extremal objects in NPol(d) is a challenge of number theoretical flavor, leading to interesting classes of normal polytopes: minimal, maximal, spherical. Minimal elements in NPol(5) have played a critical role in disproving various covering conjectures for normal polytopes in the 1990s. Here we report on the first examples of maximal elements in NPol(4) and NPol(5), found by a combination of the developed theory, random generation, and extensive computer search.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:issued>2016</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Quantum Jumps of Normal Polytopes</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-08T12:21:34Z</dcterms:available> <dc:contributor>Bruns, Winfried</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Michalek, Mateusz</dc:contributor> <dc:creator>Gubeladze, Joseph</dc:creator> <dc:creator>Michalek, Mateusz</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Gubeladze, Joseph</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52322"/> <dc:creator>Bruns, Winfried</dc:creator> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed
Yes