Publikation: Performance Bounds for the Scenario Approach and an Extension to a Class of Non-convex Programs
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider the Scenario Convex Program (SCP) for two classes of optimization problems that are not tractable in general: Robust Convex Programs (RCPs) and Chance-Constrained Programs (CCPs). We establish a probabilistic bridge from the optimal value of SCP to the optimal values of RCP and CCP in which the uncertainty takes values in a general, possibly infinite dimensional, metric space. We then extend our results to a certain class of non-convex problems that includes, for example, binary decision variables. In the process, we also settle a measurability issue for a general class of scenario programs, which to date has been addressed by an assumption. Finally, we demonstrate the applicability of our results on a benchmark problem and a problem in fault detection and isolation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MOHAJERIN ESFAHANI, Peyman, Tobias SUTTER, John LYGEROS, 2014. Performance Bounds for the Scenario Approach and an Extension to a Class of Non-convex Programs. In: IEEE Transactions on Automatic Control. IEEE. 2014, 60(1), S. 46-58. ISSN 0018-9286. eISSN 1558-2523. Verfügbar unter: doi: 10.1109/TAC.2014.2330702BibTex
@article{MohajerinEsfahani2014Perfo-55734, year={2014}, doi={10.1109/TAC.2014.2330702}, title={Performance Bounds for the Scenario Approach and an Extension to a Class of Non-convex Programs}, number={1}, volume={60}, issn={0018-9286}, journal={IEEE Transactions on Automatic Control}, pages={46--58}, author={Mohajerin Esfahani, Peyman and Sutter, Tobias and Lygeros, John} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55734"> <dc:contributor>Lygeros, John</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:20:10Z</dcterms:available> <dc:creator>Lygeros, John</dc:creator> <dc:creator>Sutter, Tobias</dc:creator> <dcterms:title>Performance Bounds for the Scenario Approach and an Extension to a Class of Non-convex Programs</dcterms:title> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55734/1/Esfahani_2-g1frqup9ed2z7.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2014</dcterms:issued> <dc:creator>Mohajerin Esfahani, Peyman</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:20:10Z</dc:date> <dc:contributor>Mohajerin Esfahani, Peyman</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Sutter, Tobias</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55734/1/Esfahani_2-g1frqup9ed2z7.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">We consider the Scenario Convex Program (SCP) for two classes of optimization problems that are not tractable in general: Robust Convex Programs (RCPs) and Chance-Constrained Programs (CCPs). We establish a probabilistic bridge from the optimal value of SCP to the optimal values of RCP and CCP in which the uncertainty takes values in a general, possibly infinite dimensional, metric space. We then extend our results to a certain class of non-convex problems that includes, for example, binary decision variables. In the process, we also settle a measurability issue for a general class of scenario programs, which to date has been addressed by an assumption. Finally, we demonstrate the applicability of our results on a benchmark problem and a problem in fault detection and isolation.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55734"/> </rdf:Description> </rdf:RDF>