Knightian Uncertainty Meets Ranking Theory

Lade...
Vorschaubild
Dateien
Spohn_2-fxsix6mtab4g9.pdf
Spohn_2-fxsix6mtab4g9.pdfGröße: 129.52 KBDownloads: 28
Datum
2017
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Homo Oeconomicus. 2017, 34(4), pp. 293-311. ISSN 0943-0180. eISSN 2366-6161. Available under: doi: 10.1007/s41412-017-0060-5
Zusammenfassung

Knightian uncertainty is not a special kind of uncertainty; it’s just uncertainty. And it raises the issue how we may model uncertainty. The paper gives a brief overview over non-probabilistic measures of uncertainty, starting with Shackle’s functions of potential surprise and mentioning non-additive probabilities, Dempster–Shafer belief functions, etc. It arrives at an explanation of ranking theory as a further uncertainty model and emphasizes its additional epistemological virtues, which consist in a representation of belief, i.e., of taking something to be true (which is the basic notion of traditional epistemology and admits of degrees as well) and a full dynamic account of those degrees. The final section addresses the issue how these uncertainty measures and in particular ranking theory may be used within a decision theoretic context.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
100 Philosophie
Schlagwörter
Knightian uncertainty, Functions of potential surprise, Baconian probability, Non-additive probability, Ranking theory, Belief, Decision theory
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SPOHN, Wolfgang, 2017. Knightian Uncertainty Meets Ranking Theory. In: Homo Oeconomicus. 2017, 34(4), pp. 293-311. ISSN 0943-0180. eISSN 2366-6161. Available under: doi: 10.1007/s41412-017-0060-5
BibTex
@article{Spohn2017-12-09Knigh-41361,
  year={2017},
  doi={10.1007/s41412-017-0060-5},
  title={Knightian Uncertainty Meets Ranking Theory},
  number={4},
  volume={34},
  issn={0943-0180},
  journal={Homo Oeconomicus},
  pages={293--311},
  author={Spohn, Wolfgang}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41361">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-14T15:46:36Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Spohn, Wolfgang</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2017-12-09</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Knightian uncertainty is not a special kind of uncertainty; it’s just uncertainty. And it raises the issue how we may model uncertainty. The paper gives a brief overview over non-probabilistic measures of uncertainty, starting with Shackle’s functions of potential surprise and mentioning non-additive probabilities, Dempster–Shafer belief functions, etc. It arrives at an explanation of ranking theory as a further uncertainty model and emphasizes its additional epistemological virtues, which consist in a representation of belief, i.e., of taking something to be true (which is the basic notion of traditional epistemology and admits of degrees as well) and a full dynamic account of those degrees. The final section addresses the issue how these uncertainty measures and in particular ranking theory may be used within a decision theoretic context.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41361/1/Spohn_2-fxsix6mtab4g9.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41361"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41361/1/Spohn_2-fxsix6mtab4g9.pdf"/>
    <dcterms:title>Knightian Uncertainty Meets Ranking Theory</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-14T15:46:36Z</dc:date>
    <dc:creator>Spohn, Wolfgang</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet