Knightian Uncertainty Meets Ranking Theory

Loading...
Thumbnail Image
Date
2017
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Homo Oeconomicus ; 34 (2017), 4. - pp. 293-311. - ISSN 0943-0180. - eISSN 2366-6161
Abstract
Knightian uncertainty is not a special kind of uncertainty; it’s just uncertainty. And it raises the issue how we may model uncertainty. The paper gives a brief overview over non-probabilistic measures of uncertainty, starting with Shackle’s functions of potential surprise and mentioning non-additive probabilities, Dempster–Shafer belief functions, etc. It arrives at an explanation of ranking theory as a further uncertainty model and emphasizes its additional epistemological virtues, which consist in a representation of belief, i.e., of taking something to be true (which is the basic notion of traditional epistemology and admits of degrees as well) and a full dynamic account of those degrees. The final section addresses the issue how these uncertainty measures and in particular ranking theory may be used within a decision theoretic context.
Summary in another language
Subject (DDC)
100 Philosophy
Keywords
Knightian uncertainty, Functions of potential surprise, Baconian probability, Non-additive probability, Ranking theory, Belief, Decision theory
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SPOHN, Wolfgang, 2017. Knightian Uncertainty Meets Ranking Theory. In: Homo Oeconomicus. 34(4), pp. 293-311. ISSN 0943-0180. eISSN 2366-6161. Available under: doi: 10.1007/s41412-017-0060-5
BibTex
@article{Spohn2017-12-09Knigh-41361,
  year={2017},
  doi={10.1007/s41412-017-0060-5},
  title={Knightian Uncertainty Meets Ranking Theory},
  number={4},
  volume={34},
  issn={0943-0180},
  journal={Homo Oeconomicus},
  pages={293--311},
  author={Spohn, Wolfgang}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41361">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-14T15:46:36Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Spohn, Wolfgang</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2017-12-09</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Knightian uncertainty is not a special kind of uncertainty; it’s just uncertainty. And it raises the issue how we may model uncertainty. The paper gives a brief overview over non-probabilistic measures of uncertainty, starting with Shackle’s functions of potential surprise and mentioning non-additive probabilities, Dempster–Shafer belief functions, etc. It arrives at an explanation of ranking theory as a further uncertainty model and emphasizes its additional epistemological virtues, which consist in a representation of belief, i.e., of taking something to be true (which is the basic notion of traditional epistemology and admits of degrees as well) and a full dynamic account of those degrees. The final section addresses the issue how these uncertainty measures and in particular ranking theory may be used within a decision theoretic context.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41361/1/Spohn_2-fxsix6mtab4g9.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41361"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41361/1/Spohn_2-fxsix6mtab4g9.pdf"/>
    <dcterms:title>Knightian Uncertainty Meets Ranking Theory</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-14T15:46:36Z</dc:date>
    <dc:creator>Spohn, Wolfgang</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed