Publikation:

Making decisions with evidential probability and objective Bayesian calibration inductive logics

Lade...
Vorschaubild

Dateien

Radzvilas_2-fx90l2oo67p73.pdf
Radzvilas_2-fx90l2oo67p73.pdfGröße: 2.52 MBDownloads: 26

Datum

2023

Autor:innen

Peden, William
De Pretis, Francesco

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Journal of Approximate Reasoning. Elsevier. 2023, 162, 109030. ISSN 0888-613X. eISSN 1873-4731. Available under: doi: 10.1016/j.ijar.2023.109030

Zusammenfassung

Calibration inductive logics are based on accepting estimates of relative frequencies, which are used to generate imprecise probabilities. In turn, these imprecise probabilities are intended to guide beliefs and decisions — a process called “calibration”. Two prominent examples are Henry E. Kyburg's system of Evidential Probability and Jon Williamson's version of Objective Bayesianism. There are many unexplored questions about these logics. How well do they perform in the short-run? Under what circumstances do they do better or worse? What is their performance relative to traditional Bayesianism?

In this article, we develop an agent-based model of a classic binomial decision problem, including players based on variations of Evidential Probability and Objective Bayesianism. We compare the performances of these players, including against a benchmark player who uses standard Bayesian inductive logic. We find that the calibrated players can match the performance of the Bayesian player, but only with particular acceptance thresholds and decision rules. Among other points, our discussion raises some challenges for characterising “cautious” reasoning using imprecise probabilities. Thus, we demonstrate a new way of systematically comparing imprecise probability systems, and we conclude that calibration inductive logics are surprisingly promising for making decisions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
100 Philosophie

Schlagwörter

Agent-based modelling, Decision under uncertainty, Frequentist statistics, Imprecise probability, Machine learning, Objective Bayesianism

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RADZVILAS, Mantas, William PEDEN, Francesco DE PRETIS, 2023. Making decisions with evidential probability and objective Bayesian calibration inductive logics. In: International Journal of Approximate Reasoning. Elsevier. 2023, 162, 109030. ISSN 0888-613X. eISSN 1873-4731. Available under: doi: 10.1016/j.ijar.2023.109030
BibTex
@article{Radzvilas2023Makin-68115,
  year={2023},
  doi={10.1016/j.ijar.2023.109030},
  title={Making decisions with evidential probability and objective Bayesian calibration inductive logics},
  volume={162},
  issn={0888-613X},
  journal={International Journal of Approximate Reasoning},
  author={Radzvilas, Mantas and Peden, William and De Pretis, Francesco},
  note={Article Number: 109030}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68115">
    <dc:contributor>Peden, William</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:contributor>De Pretis, Francesco</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-10T08:01:20Z</dc:date>
    <dc:creator>Peden, William</dc:creator>
    <dc:contributor>Radzvilas, Mantas</dc:contributor>
    <dc:creator>Radzvilas, Mantas</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68115"/>
    <dcterms:title>Making decisions with evidential probability and objective Bayesian calibration inductive logics</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68115/1/Radzvilas_2-fx90l2oo67p73.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-10T08:01:20Z</dcterms:available>
    <dc:creator>De Pretis, Francesco</dc:creator>
    <dcterms:abstract>Calibration inductive logics are based on accepting estimates of relative frequencies, which are used to generate imprecise probabilities. In turn, these imprecise probabilities are intended to guide beliefs and decisions — a process called “calibration”. Two prominent examples are Henry E. Kyburg's system of Evidential Probability and Jon Williamson's version of Objective Bayesianism. There are many unexplored questions about these logics. How well do they perform in the short-run? Under what circumstances do they do better or worse? What is their performance relative to traditional Bayesianism?&lt;br /&gt;&lt;br /&gt; In this article, we develop an agent-based model of a classic binomial decision problem, including players based on variations of Evidential Probability and Objective Bayesianism. We compare the performances of these players, including against a benchmark player who uses standard Bayesian inductive logic. We find that the calibrated players can match the performance of the Bayesian player, but only with particular acceptance thresholds and decision rules. Among other points, our discussion raises some challenges for characterising “cautious” reasoning using imprecise probabilities. Thus, we demonstrate a new way of systematically comparing imprecise probability systems, and we conclude that calibration inductive logics are surprisingly promising for making decisions.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68115/1/Radzvilas_2-fx90l2oo67p73.pdf"/>
    <dcterms:issued>2023</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen