Publikation: Making decisions with evidential probability and objective Bayesian calibration inductive logics
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Calibration inductive logics are based on accepting estimates of relative frequencies, which are used to generate imprecise probabilities. In turn, these imprecise probabilities are intended to guide beliefs and decisions — a process called “calibration”. Two prominent examples are Henry E. Kyburg's system of Evidential Probability and Jon Williamson's version of Objective Bayesianism. There are many unexplored questions about these logics. How well do they perform in the short-run? Under what circumstances do they do better or worse? What is their performance relative to traditional Bayesianism?
In this article, we develop an agent-based model of a classic binomial decision problem, including players based on variations of Evidential Probability and Objective Bayesianism. We compare the performances of these players, including against a benchmark player who uses standard Bayesian inductive logic. We find that the calibrated players can match the performance of the Bayesian player, but only with particular acceptance thresholds and decision rules. Among other points, our discussion raises some challenges for characterising “cautious” reasoning using imprecise probabilities. Thus, we demonstrate a new way of systematically comparing imprecise probability systems, and we conclude that calibration inductive logics are surprisingly promising for making decisions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RADZVILAS, Mantas, William PEDEN, Francesco DE PRETIS, 2023. Making decisions with evidential probability and objective Bayesian calibration inductive logics. In: International Journal of Approximate Reasoning. Elsevier. 2023, 162, 109030. ISSN 0888-613X. eISSN 1873-4731. Available under: doi: 10.1016/j.ijar.2023.109030BibTex
@article{Radzvilas2023Makin-68115, year={2023}, doi={10.1016/j.ijar.2023.109030}, title={Making decisions with evidential probability and objective Bayesian calibration inductive logics}, volume={162}, issn={0888-613X}, journal={International Journal of Approximate Reasoning}, author={Radzvilas, Mantas and Peden, William and De Pretis, Francesco}, note={Article Number: 109030} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68115"> <dc:contributor>Peden, William</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dc:contributor>De Pretis, Francesco</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-10T08:01:20Z</dc:date> <dc:creator>Peden, William</dc:creator> <dc:contributor>Radzvilas, Mantas</dc:contributor> <dc:creator>Radzvilas, Mantas</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68115"/> <dcterms:title>Making decisions with evidential probability and objective Bayesian calibration inductive logics</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68115/1/Radzvilas_2-fx90l2oo67p73.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-10T08:01:20Z</dcterms:available> <dc:creator>De Pretis, Francesco</dc:creator> <dcterms:abstract>Calibration inductive logics are based on accepting estimates of relative frequencies, which are used to generate imprecise probabilities. In turn, these imprecise probabilities are intended to guide beliefs and decisions — a process called “calibration”. Two prominent examples are Henry E. Kyburg's system of Evidential Probability and Jon Williamson's version of Objective Bayesianism. There are many unexplored questions about these logics. How well do they perform in the short-run? Under what circumstances do they do better or worse? What is their performance relative to traditional Bayesianism?<br /><br /> In this article, we develop an agent-based model of a classic binomial decision problem, including players based on variations of Evidential Probability and Objective Bayesianism. We compare the performances of these players, including against a benchmark player who uses standard Bayesian inductive logic. We find that the calibrated players can match the performance of the Bayesian player, but only with particular acceptance thresholds and decision rules. Among other points, our discussion raises some challenges for characterising “cautious” reasoning using imprecise probabilities. Thus, we demonstrate a new way of systematically comparing imprecise probability systems, and we conclude that calibration inductive logics are surprisingly promising for making decisions.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68115/1/Radzvilas_2-fx90l2oo67p73.pdf"/> <dcterms:issued>2023</dcterms:issued> </rdf:Description> </rdf:RDF>