Publikation:

Building precise classifiers with automatic rule extraction

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

1995

Autor:innen

Huber, Klaus-Peter

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of ICNN'95 - International Conference on Neural Networks. IEEE, 1995, pp. 1263-1268. ISBN 0-7803-2768-3. Available under: doi: 10.1109/ICNN.1995.487337

Zusammenfassung

An algorithm is presented to train a special kind of a local basis function classifier. The so-called “rectangular basis function network” (RecBFN) consists of hidden units, each covering a rectangular area in the input space, using a trapezoidal activation function. The underlying training algorithm allows easy and fast construction of these types of networks and no parameters need to be adjusted, only normalization of the input-data is necessary. Classification performance of the RecBFN is shown to be comparable to the state of the art classifiers on eight datasets from the StatLog archive. In addition the resulting network allows easy extraction of the learned rules in a form of if-then statements. These rules additionally include soft boundaries resulting in membership values for each class (a possibility of membership is provided). Extraction of meaningful rules is demonstrated on several datasets. The resulting rules can be ranked according to the order of importance and allow the net to extract only few relevant rules in the case of a larger rule base. It is shown that the performance of the network degrades smoothly with the number of rules excluded from the final rule set

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

ICNN'95 - International Conference on Neural Networks, Perth, WA, Australia
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HUBER, Klaus-Peter, Michael R. BERTHOLD, 1995. Building precise classifiers with automatic rule extraction. ICNN'95 - International Conference on Neural Networks. Perth, WA, Australia. In: Proceedings of ICNN'95 - International Conference on Neural Networks. IEEE, 1995, pp. 1263-1268. ISBN 0-7803-2768-3. Available under: doi: 10.1109/ICNN.1995.487337
BibTex
@inproceedings{Huber1995Build-24193,
  year={1995},
  doi={10.1109/ICNN.1995.487337},
  title={Building precise classifiers with automatic rule extraction},
  isbn={0-7803-2768-3},
  publisher={IEEE},
  booktitle={Proceedings of ICNN'95 - International Conference on Neural Networks},
  pages={1263--1268},
  author={Huber, Klaus-Peter and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24193">
    <dcterms:title>Building precise classifiers with automatic rule extraction</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-23T13:07:40Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24193"/>
    <dc:creator>Huber, Klaus-Peter</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Huber, Klaus-Peter</dc:contributor>
    <dcterms:issued>1995</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:bibliographicCitation>1995 IEEE International Conference on Neural Networks proceedings : Perth, Western Australia, 27 November - 1 December 1995; Vol. 3. - Piscataway, NJ : IEEE Service Center, 1995. - S. 1263-1268. - ISBN 0-7803-2768-3</dcterms:bibliographicCitation>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dcterms:abstract xml:lang="eng">An algorithm is presented to train a special kind of a local basis function classifier. The so-called “rectangular basis function network” (RecBFN) consists of hidden units, each covering a rectangular area in the input space, using a trapezoidal activation function. The underlying training algorithm allows easy and fast construction of these types of networks and no parameters need to be adjusted, only normalization of the input-data is necessary. Classification performance of the RecBFN is shown to be comparable to the state of the art classifiers on eight datasets from the StatLog archive. In addition the resulting network allows easy extraction of the learned rules in a form of if-then statements. These rules additionally include soft boundaries resulting in membership values for each class (a possibility of membership is provided). Extraction of meaningful rules is demonstrated on several datasets. The resulting rules can be ranked according to the order of importance and allow the net to extract only few relevant rules in the case of a larger rule base. It is shown that the performance of the network degrades smoothly with the number of rules excluded from the final rule set</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-23T13:07:40Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen