Improving prediction of Alzheimer's disease using patterns of cortical thinning and homogenizing images according to disease stage

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2012
Autor:innen
Eskildsen, Simon
Coupé, Pierrick
García-Lorenzo, Daniel
Fonov, Vladimir
Collins, Louis
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
YUSHKEVICH, Paul A., ed., Lei WANG, ed., Sebastien OURSELIN, ed.. NIBAD'12 : MICCAI 2012 Workshop on Novel Biomarkers for Alzheimer's Disease and Related Disorders. CreateSpace Independent Publishing Platform, 2012, pp. 79-90. ISBN 978-1-4792-6199-4
Zusammenfassung

Predicting Alzheimer's disease (AD) in individuals with some symp-toms of cognitive decline may have great influence on treatment choice and guide subject selection in trials on disease modifying drugs. Structural MRI has the potential of revealing early signs of neurodegeneration in the human brain and may thus aid in predicting and diagnosing AD. Surface-based cortical thickness measurements from T1-weighted MRI have demonstrated high sensi-tivity to cortical gray matter changes. In this study, we investigated the possibil-ity of using patterns of cortical thickness measurements for predicting AD in subjects with mild cognitive impairment (MCI). Specific patterns of atrophy were identified at four time periods before diagnosis of probable AD and fea-tures were selected as regions of interest within these patterns. The selected re-gions were used for cortical thickness measurements and applied in a classifier for testing the ability to predict AD at the four stages. The accuracy of the pre-diction improved as the time to conversion from MCI to AD decreased, from 70% at 3 years before the clinical criteria for AD was met, to 76% at 6 months before AD. These results show that prediction accuracies of conversion from MCI to AD can be improved by learning the atrophy patterns that are specific to the different stages of disease progression. This has the potential to guide the further development of imaging biomarkers in AD.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
150 Psychologie
Schlagwörter
Konferenz
MICCAI 2012 Workshop on Novel Imaging Biomarkers for Alzheimer's Disease and Related Disorders, 5. Okt. 2012 - 5. Okt. 2012, Nice
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690ESKILDSEN, Simon, Pierrick COUPÉ, Daniel GARCÍA-LORENZO, Vladimir FONOV, Jens C. PRUESSNER, Louis COLLINS, 2012. Improving prediction of Alzheimer's disease using patterns of cortical thinning and homogenizing images according to disease stage. MICCAI 2012 Workshop on Novel Imaging Biomarkers for Alzheimer's Disease and Related Disorders. Nice, 5. Okt. 2012 - 5. Okt. 2012. In: YUSHKEVICH, Paul A., ed., Lei WANG, ed., Sebastien OURSELIN, ed.. NIBAD'12 : MICCAI 2012 Workshop on Novel Biomarkers for Alzheimer's Disease and Related Disorders. CreateSpace Independent Publishing Platform, 2012, pp. 79-90. ISBN 978-1-4792-6199-4
BibTex
@inproceedings{Eskildsen2012Impro-56040,
  year={2012},
  title={Improving prediction of Alzheimer's disease using patterns of cortical thinning and homogenizing images according to disease stage},
  isbn={978-1-4792-6199-4},
  publisher={CreateSpace Independent Publishing Platform},
  booktitle={NIBAD'12 : MICCAI 2012 Workshop on Novel Biomarkers for Alzheimer's Disease and Related Disorders},
  pages={79--90},
  editor={Yushkevich, Paul A. and Wang, Lei and Ourselin, Sebastien},
  author={Eskildsen, Simon and Coupé, Pierrick and García-Lorenzo, Daniel and Fonov, Vladimir and Pruessner, Jens C. and Collins, Louis}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56040">
    <dc:contributor>Pruessner, Jens C.</dc:contributor>
    <dc:creator>Coupé, Pierrick</dc:creator>
    <dc:contributor>Coupé, Pierrick</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>García-Lorenzo, Daniel</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Predicting Alzheimer's disease (AD) in individuals with some symp-toms of cognitive decline may have great influence on treatment choice and guide subject selection in trials on disease modifying drugs. Structural MRI has the potential of revealing early signs of neurodegeneration in the human brain and may thus aid in predicting and diagnosing AD. Surface-based cortical thickness measurements from T1-weighted MRI have demonstrated high sensi-tivity to cortical gray matter changes. In this study, we investigated the possibil-ity of using patterns of cortical thickness measurements for predicting AD in subjects with mild cognitive impairment (MCI). Specific patterns of atrophy were identified at four time periods before diagnosis of probable AD and fea-tures were selected as regions of interest within these patterns. The selected re-gions were used for cortical thickness measurements and applied in a classifier for testing the ability to predict AD at the four stages. The accuracy of the pre-diction improved as the time to conversion from MCI to AD decreased, from 70% at 3 years before the clinical criteria for AD was met, to 76% at 6 months before AD. These results show that prediction accuracies of conversion from MCI to AD can be improved by learning the atrophy patterns that are specific to the different stages of disease progression. This has the potential to guide the further development of imaging biomarkers in AD.</dcterms:abstract>
    <dc:creator>Eskildsen, Simon</dc:creator>
    <dcterms:title>Improving prediction of Alzheimer's disease using patterns of cortical thinning and homogenizing images according to disease stage</dcterms:title>
    <dc:creator>Fonov, Vladimir</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>García-Lorenzo, Daniel</dc:creator>
    <dc:contributor>Collins, Louis</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-23T10:52:51Z</dc:date>
    <dc:creator>Pruessner, Jens C.</dc:creator>
    <dc:contributor>Fonov, Vladimir</dc:contributor>
    <dcterms:issued>2012</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56040"/>
    <dc:creator>Collins, Louis</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Eskildsen, Simon</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-23T10:52:51Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet