Memory and Markov Blankets

Lade...
Vorschaubild
Dateien
Parr_2-fnvg56a8trfg2.pdf
Parr_2-fnvg56a8trfg2.pdfGröße: 3.72 MBDownloads: 106
Datum
2021
Autor:innen
Parr, Thomas
Da Costa, Lancelot
Ramstead, Maxwell James D.
Friston, Karl J.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Entropy. MDPI. 2021, 23(9), 1105. eISSN 1099-4300. Available under: doi: 10.3390/e23091105
Zusammenfassung

In theoretical biology, we are often interested in random dynamical systems—like the brain—that appear to model their environments. This can be formalized by appealing to the existence of a (possibly non-equilibrium) steady state, whose density preserves a conditional independence between a biological entity and its surroundings. From this perspective, the conditioning set, or Markov blanket, induces a form of vicarious synchrony between creature and world—as if one were modelling the other. However, this results in an apparent paradox. If all conditional dependencies between a system and its surroundings depend upon the blanket, how do we account for the mnemonic capacity of living systems? It might appear that any shared dependence upon past blanket states violates the independence condition, as the variables on either side of the blanket now share information not available from the current blanket state. This paper aims to resolve this paradox, and to demonstrate that conditional independence does not preclude memory. Our argument rests upon drawing a distinction between the dependencies implied by a steady state density, and the density dynamics of the system conditioned upon its configuration at a previous time. The interesting question then becomes: What determines the length of time required for a stochastic system to ‘forget’ its initial conditions? We explore this question for an example system, whose steady state density possesses a Markov blanket, through simple numerical analyses. We conclude with a discussion of the relevance for memory in cognitive systems like us.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Markov blanket; memory; conditional dependence; stochastic; density dynamics; Laplace assumption
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690PARR, Thomas, Lancelot DA COSTA, Conor HEINS, Maxwell James D. RAMSTEAD, Karl J. FRISTON, 2021. Memory and Markov Blankets. In: Entropy. MDPI. 2021, 23(9), 1105. eISSN 1099-4300. Available under: doi: 10.3390/e23091105
BibTex
@article{Parr2021-09Memor-54886,
  year={2021},
  doi={10.3390/e23091105},
  title={Memory and Markov Blankets},
  number={9},
  volume={23},
  journal={Entropy},
  author={Parr, Thomas and Da Costa, Lancelot and Heins, Conor and Ramstead, Maxwell James D. and Friston, Karl J.},
  note={Article Number: 1105}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54886">
    <dcterms:abstract xml:lang="eng">In theoretical biology, we are often interested in random dynamical systems—like the brain—that appear to model their environments. This can be formalized by appealing to the existence of a (possibly non-equilibrium) steady state, whose density preserves a conditional independence between a biological entity and its surroundings. From this perspective, the conditioning set, or Markov blanket, induces a form of vicarious synchrony between creature and world—as if one were modelling the other. However, this results in an apparent paradox. If all conditional dependencies between a system and its surroundings depend upon the blanket, how do we account for the mnemonic capacity of living systems? It might appear that any shared dependence upon past blanket states violates the independence condition, as the variables on either side of the blanket now share information not available from the current blanket state. This paper aims to resolve this paradox, and to demonstrate that conditional independence does not preclude memory. Our argument rests upon drawing a distinction between the dependencies implied by a steady state density, and the density dynamics of the system conditioned upon its configuration at a previous time. The interesting question then becomes: What determines the length of time required for a stochastic system to ‘forget’ its initial conditions? We explore this question for an example system, whose steady state density possesses a Markov blanket, through simple numerical analyses. We conclude with a discussion of the relevance for memory in cognitive systems like us.</dcterms:abstract>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Ramstead, Maxwell James D.</dc:creator>
    <dc:contributor>Parr, Thomas</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54886"/>
    <dc:creator>Friston, Karl J.</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-16T10:56:27Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Parr, Thomas</dc:creator>
    <dcterms:title>Memory and Markov Blankets</dcterms:title>
    <dc:contributor>Friston, Karl J.</dc:contributor>
    <dc:contributor>Da Costa, Lancelot</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Heins, Conor</dc:contributor>
    <dc:creator>Da Costa, Lancelot</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54886/1/Parr_2-fnvg56a8trfg2.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-16T10:56:27Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54886/1/Parr_2-fnvg56a8trfg2.pdf"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Ramstead, Maxwell James D.</dc:contributor>
    <dcterms:issued>2021-09</dcterms:issued>
    <dc:creator>Heins, Conor</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen