Memory and Markov Blankets
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In theoretical biology, we are often interested in random dynamical systems—like the brain—that appear to model their environments. This can be formalized by appealing to the existence of a (possibly non-equilibrium) steady state, whose density preserves a conditional independence between a biological entity and its surroundings. From this perspective, the conditioning set, or Markov blanket, induces a form of vicarious synchrony between creature and world—as if one were modelling the other. However, this results in an apparent paradox. If all conditional dependencies between a system and its surroundings depend upon the blanket, how do we account for the mnemonic capacity of living systems? It might appear that any shared dependence upon past blanket states violates the independence condition, as the variables on either side of the blanket now share information not available from the current blanket state. This paper aims to resolve this paradox, and to demonstrate that conditional independence does not preclude memory. Our argument rests upon drawing a distinction between the dependencies implied by a steady state density, and the density dynamics of the system conditioned upon its configuration at a previous time. The interesting question then becomes: What determines the length of time required for a stochastic system to ‘forget’ its initial conditions? We explore this question for an example system, whose steady state density possesses a Markov blanket, through simple numerical analyses. We conclude with a discussion of the relevance for memory in cognitive systems like us.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PARR, Thomas, Lancelot DA COSTA, Conor HEINS, Maxwell James D. RAMSTEAD, Karl J. FRISTON, 2021. Memory and Markov Blankets. In: Entropy. MDPI. 2021, 23(9), 1105. eISSN 1099-4300. Available under: doi: 10.3390/e23091105BibTex
@article{Parr2021-09Memor-54886, year={2021}, doi={10.3390/e23091105}, title={Memory and Markov Blankets}, number={9}, volume={23}, journal={Entropy}, author={Parr, Thomas and Da Costa, Lancelot and Heins, Conor and Ramstead, Maxwell James D. and Friston, Karl J.}, note={Article Number: 1105} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54886"> <dcterms:abstract xml:lang="eng">In theoretical biology, we are often interested in random dynamical systems—like the brain—that appear to model their environments. This can be formalized by appealing to the existence of a (possibly non-equilibrium) steady state, whose density preserves a conditional independence between a biological entity and its surroundings. From this perspective, the conditioning set, or Markov blanket, induces a form of vicarious synchrony between creature and world—as if one were modelling the other. However, this results in an apparent paradox. If all conditional dependencies between a system and its surroundings depend upon the blanket, how do we account for the mnemonic capacity of living systems? It might appear that any shared dependence upon past blanket states violates the independence condition, as the variables on either side of the blanket now share information not available from the current blanket state. This paper aims to resolve this paradox, and to demonstrate that conditional independence does not preclude memory. Our argument rests upon drawing a distinction between the dependencies implied by a steady state density, and the density dynamics of the system conditioned upon its configuration at a previous time. The interesting question then becomes: What determines the length of time required for a stochastic system to ‘forget’ its initial conditions? We explore this question for an example system, whose steady state density possesses a Markov blanket, through simple numerical analyses. We conclude with a discussion of the relevance for memory in cognitive systems like us.</dcterms:abstract> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Ramstead, Maxwell James D.</dc:creator> <dc:contributor>Parr, Thomas</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54886"/> <dc:creator>Friston, Karl J.</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-16T10:56:27Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Parr, Thomas</dc:creator> <dcterms:title>Memory and Markov Blankets</dcterms:title> <dc:contributor>Friston, Karl J.</dc:contributor> <dc:contributor>Da Costa, Lancelot</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:contributor>Heins, Conor</dc:contributor> <dc:creator>Da Costa, Lancelot</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54886/1/Parr_2-fnvg56a8trfg2.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-16T10:56:27Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54886/1/Parr_2-fnvg56a8trfg2.pdf"/> <dc:language>eng</dc:language> <dc:contributor>Ramstead, Maxwell James D.</dc:contributor> <dcterms:issued>2021-09</dcterms:issued> <dc:creator>Heins, Conor</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>