Publikation: Highly-Automatic MI Based Multiple 2D/3D Image Registration Using Self-initialized Geodesic Feature Correspondences
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Intensity based registration methods, such as the mutual information (MI), do not commonly consider the spatial geometric information and the initial correspondences are uncertainty. In this paper, we present a novel approach for achieving highly-automatic 2D/3D image registration integrating the advantages from both entropy MI and spatial geometric features correspondence methods. Inspired by the scale space theory, we project the surfaces on a 3D model to 2D normal image spaces provided that it can extract both local geodesic feature descriptors and global spatial information for estimating initial correspondences for image-to-image and image-to-model registration. The multiple 2D/3D image registration can then be further refined using MI. The maximization of MI is effectively achieved using global stochastic optimization. To verify the feasibility, we have registered various artistic 3D models with different structures and extures. The high-quality results show that the proposed approach is highly-automatic and reliable.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZHENG, Hongwei, Ioan CLEJU, Dietmar SAUPE, 2010. Highly-Automatic MI Based Multiple 2D/3D Image Registration Using Self-initialized Geodesic Feature Correspondences. In: ZHA, Hongbin, ed., Rin-ichiro TANIGUCHI, ed., Stephen MAYBANK, ed.. Computer Vision – ACCV 2009. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 426-435. Lecture Notes in Computer Science. 5996. ISBN 978-3-642-12296-5. Available under: doi: 10.1007/978-3-642-12297-2_41BibTex
@inproceedings{Zheng2010Highl-6021, year={2010}, doi={10.1007/978-3-642-12297-2_41}, title={Highly-Automatic MI Based Multiple 2D/3D Image Registration Using Self-initialized Geodesic Feature Correspondences}, number={5996}, isbn={978-3-642-12296-5}, publisher={Springer Berlin Heidelberg}, address={Berlin, Heidelberg}, series={Lecture Notes in Computer Science}, booktitle={Computer Vision – ACCV 2009}, pages={426--435}, editor={Zha, Hongbin and Taniguchi, Rin-ichiro and Maybank, Stephen}, author={Zheng, Hongwei and Cleju, Ioan and Saupe, Dietmar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6021"> <dcterms:title>Highly-Automatic MI Based Multiple 2D/3D Image Registration Using Self-initialized Geodesic Feature Correspondences</dcterms:title> <dc:creator>Saupe, Dietmar</dc:creator> <dcterms:bibliographicCitation>First publ. in: Computer Vision - ACCV 2009 : 9th Asian Conference on Computer Vision, Xi'an, China, September 23-27, 2009, Revised Selected Papers ; Part III / Zha, Hongbin ... (eds.). Berlin: Springer, 2010, pp. 426 435</dcterms:bibliographicCitation> <dc:creator>Zheng, Hongwei</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-05-31T22:25:04Z</dcterms:available> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:contributor>Zheng, Hongwei</dc:contributor> <dc:contributor>Cleju, Ioan</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2010</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:47Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6021"/> <dc:format>application/pdf</dc:format> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6021/1/Highly_Automatic_Zheng.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Cleju, Ioan</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6021/1/Highly_Automatic_Zheng.pdf"/> <dcterms:abstract xml:lang="eng">Intensity based registration methods, such as the mutual information (MI), do not commonly consider the spatial geometric information and the initial correspondences are uncertainty. In this paper, we present a novel approach for achieving highly-automatic 2D/3D image registration integrating the advantages from both entropy MI and spatial geometric features correspondence methods. Inspired by the scale space theory, we project the surfaces on a 3D model to 2D normal image spaces provided that it can extract both local geodesic feature descriptors and global spatial information for estimating initial correspondences for image-to-image and image-to-model registration. The multiple 2D/3D image registration can then be further refined using MI. The maximization of MI is effectively achieved using global stochastic optimization. To verify the feasibility, we have registered various artistic 3D models with different structures and extures. The high-quality results show that the proposed approach is highly-automatic and reliable.</dcterms:abstract> </rdf:Description> </rdf:RDF>