Publikation:

Acoustic evaluation of behavioral states predicted from GPS tracking : a case study of a marine fishing bat

Lade...
Vorschaubild

Dateien

Hurme_2-flds4mqg1ovu9.pdf
Hurme_2-flds4mqg1ovu9.pdfGröße: 4.27 MBDownloads: 323

Datum

2019

Autor:innen

Gurarie, Eliezer
Greif, Stefan
Herrera M, L. Gerardo
Flores-Martínez, José Juan
Wilkinson, Gerald S.
Yovel, Yossi

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Movement ecology. BioMed Central. 2019, 7, 21. eISSN 2051-3933. Available under: doi: 10.1186/s40462-019-0163-7

Zusammenfassung

Background: Multiple methods have been developed to infer behavioral states from animal movement data, but rarely has their accuracy been assessed from independent evidence, especially for location data sampled with high temporal resolution. Here we evaluate the performance of behavioral segmentation methods using acoustic recordings that monitor prey capture attempts.

Methods: We recorded GPS locations and ultrasonic audio during the foraging trips of 11 Mexican fish-eating bats, Myotis vivesi, using miniature bio-loggers. We then applied five different segmentation algorithms (k-means clustering, expectation-maximization and binary clustering, first-passage time, hidden Markov models, and correlated velocity change point analysis) to infer two behavioral states, foraging and commuting, from the GPS data. To evaluate the inference, we independently identified characteristic patterns of biosonar calls (“feeding buzzes”) that occur during foraging in the audio recordings. We then compared segmentation methods on how well they correctly identified the two behaviors and if their estimates of foraging movement parameters matched those for locations with buzzes.

Results: While the five methods differed in the median percentage of buzzes occurring during predicted foraging events, or true positive rate (44–75%), a two-state hidden Markov model had the highest median balanced accuracy (67%). Hidden Markov models and first-passage time predicted foraging flight speeds and turn angles similar to those measured at locations with feeding buzzes and did not differ in the number or duration of predicted foraging events.

Conclusion: The hidden Markov model method performed best at identifying fish-eating bat foraging segments; however, first-passage time was not significantly different and gave similar parameter estimates. This is the first attempt to evaluate segmentation methodologies in echolocating bats and provides an evaluation framework that can be used on other species.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Behavioral change point analysis, Correlated velocity movement, Expectation maximization and binary clustering, First-passage time, Foraging, GPS telemetry, Hidden Markov models, K-means, Path segmentation

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HURME, Edward, Eliezer GURARIE, Stefan GREIF, L. Gerardo HERRERA M, José Juan FLORES-MARTÍNEZ, Gerald S. WILKINSON, Yossi YOVEL, 2019. Acoustic evaluation of behavioral states predicted from GPS tracking : a case study of a marine fishing bat. In: Movement ecology. BioMed Central. 2019, 7, 21. eISSN 2051-3933. Available under: doi: 10.1186/s40462-019-0163-7
BibTex
@article{Hurme2019Acous-54207,
  year={2019},
  doi={10.1186/s40462-019-0163-7},
  title={Acoustic evaluation of behavioral states predicted from GPS tracking : a case study of a marine fishing bat},
  volume={7},
  journal={Movement ecology},
  author={Hurme, Edward and Gurarie, Eliezer and Greif, Stefan and Herrera M, L. Gerardo and Flores-Martínez, José Juan and Wilkinson, Gerald S. and Yovel, Yossi},
  note={Article Number: 21}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54207">
    <dc:contributor>Herrera M, L. Gerardo</dc:contributor>
    <dc:contributor>Yovel, Yossi</dc:contributor>
    <dc:creator>Wilkinson, Gerald S.</dc:creator>
    <dcterms:issued>2019</dcterms:issued>
    <dcterms:title>Acoustic evaluation of behavioral states predicted from GPS tracking : a case study of a marine fishing bat</dcterms:title>
    <dcterms:abstract xml:lang="eng">Background: Multiple methods have been developed to infer behavioral states from animal movement data, but rarely has their accuracy been assessed from independent evidence, especially for location data sampled with high temporal resolution. Here we evaluate the performance of behavioral segmentation methods using acoustic recordings that monitor prey capture attempts.&lt;br /&gt;&lt;br /&gt;Methods: We recorded GPS locations and ultrasonic audio during the foraging trips of 11 Mexican fish-eating bats, Myotis vivesi, using miniature bio-loggers. We then applied five different segmentation algorithms (k-means clustering, expectation-maximization and binary clustering, first-passage time, hidden Markov models, and correlated velocity change point analysis) to infer two behavioral states, foraging and commuting, from the GPS data. To evaluate the inference, we independently identified characteristic patterns of biosonar calls (“feeding buzzes”) that occur during foraging in the audio recordings. We then compared segmentation methods on how well they correctly identified the two behaviors and if their estimates of foraging movement parameters matched those for locations with buzzes.&lt;br /&gt;&lt;br /&gt;Results: While the five methods differed in the median percentage of buzzes occurring during predicted foraging events, or true positive rate (44–75%), a two-state hidden Markov model had the highest median balanced accuracy (67%). Hidden Markov models and first-passage time predicted foraging flight speeds and turn angles similar to those measured at locations with feeding buzzes and did not differ in the number or duration of predicted foraging events.&lt;br /&gt;&lt;br /&gt;Conclusion: The hidden Markov model method performed best at identifying fish-eating bat foraging segments; however, first-passage time was not significantly different and gave similar parameter estimates. This is the first attempt to evaluate segmentation methodologies in echolocating bats and provides an evaluation framework that can be used on other species.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Hurme, Edward</dc:contributor>
    <dc:creator>Gurarie, Eliezer</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Herrera M, L. Gerardo</dc:creator>
    <dc:creator>Greif, Stefan</dc:creator>
    <dc:contributor>Wilkinson, Gerald S.</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54207"/>
    <dc:contributor>Gurarie, Eliezer</dc:contributor>
    <dc:creator>Flores-Martínez, José Juan</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-06T09:56:54Z</dcterms:available>
    <dc:contributor>Flores-Martínez, José Juan</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Greif, Stefan</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Yovel, Yossi</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54207/3/Hurme_2-flds4mqg1ovu9.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54207/3/Hurme_2-flds4mqg1ovu9.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-06T09:56:54Z</dc:date>
    <dc:creator>Hurme, Edward</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen