Applying Data Science to Criminal Intelligence Analysis

No Thumbnail Available
Files
There are no files associated with this item.
Date
2017
Authors
Qazi, Nadeem
Blomqvist, Eva
Aichroth, Patrick
Weigel, Christian
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
VALCRI White Paper Series; VALCRI-WP-2017-003
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Working Paper/Technical Report
Publication status
Published
Published in
Abstract
A major challenge of criminal intelligence analysis is to process large amount of semi-structured or unstructured data such as textual documents and videos and to extract useful information out of the data to support semantic search, sense-making and decision making. In VALCI, a computational framework is developed that incorporates concept extraction, ontology use and evolution, associative search, and image/ video analysis for semantic search and knowledge discovery. In this whitepaper we introduce the key concepts have been applied and their corresponding technologies that have been developed to tackle the challenge.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Criminal Intelligence, Semantic Search, Evolving Knowledge Base, Ontology, Associative Search, Concept Extraction, Video Analysis
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690QAZI, Nadeem, Leishi ZHANG, Eva BLOMQVIST, Florian STOFFEL, Patrick AICHROTH, Christian WEIGEL, 2017. Applying Data Science to Criminal Intelligence Analysis
BibTex
@techreport{Qazi2017Apply-45078,
  year={2017},
  series={VALCRI White Paper Series},
  title={Applying Data Science to Criminal Intelligence Analysis},
  number={VALCRI-WP-2017-003},
  url={http://valcri.org/valcri/applying-data-science-to-criminal-intelligence-analysis/},
  author={Qazi, Nadeem and Zhang, Leishi and Blomqvist, Eva and Stoffel, Florian and Aichroth, Patrick and Weigel, Christian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45078">
    <dc:contributor>Blomqvist, Eva</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">A major challenge of criminal intelligence analysis is to process large amount of semi-structured or unstructured data such as textual documents and videos and to extract useful information out of the data to support semantic search, sense-making and decision making. In VALCI, a computational framework is developed that incorporates concept extraction, ontology use and evolution, associative search, and image/ video analysis for semantic search and knowledge discovery. In this whitepaper we introduce the key concepts have been applied and their corresponding technologies that have been developed to tackle the challenge.</dcterms:abstract>
    <dc:creator>Zhang, Leishi</dc:creator>
    <dc:creator>Weigel, Christian</dc:creator>
    <dc:contributor>Aichroth, Patrick</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45078"/>
    <dc:contributor>Weigel, Christian</dc:contributor>
    <dc:contributor>Qazi, Nadeem</dc:contributor>
    <dc:creator>Qazi, Nadeem</dc:creator>
    <dc:creator>Blomqvist, Eva</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:creator>Stoffel, Florian</dc:creator>
    <dcterms:issued>2017</dcterms:issued>
    <dc:contributor>Stoffel, Florian</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-18T14:43:28Z</dc:date>
    <dcterms:title>Applying Data Science to Criminal Intelligence Analysis</dcterms:title>
    <dc:contributor>Zhang, Leishi</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Aichroth, Patrick</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-18T14:43:28Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed