Publikation: Applying Data Science to Criminal Intelligence Analysis
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
VALCRI White Paper Series; VALCRI-WP-2017-003
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung
A major challenge of criminal intelligence analysis is to process large amount of semi-structured or unstructured data such as textual documents and videos and to extract useful information out of the data to support semantic search, sense-making and decision making. In VALCI, a computational framework is developed that incorporates concept extraction, ontology use and evolution, associative search, and image/ video analysis for semantic search and knowledge discovery. In this whitepaper we introduce the key concepts have been applied and their corresponding technologies that have been developed to tackle the challenge.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Criminal Intelligence, Semantic Search, Evolving Knowledge Base, Ontology, Associative Search, Concept Extraction, Video Analysis
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
QAZI, Nadeem, Leishi ZHANG, Eva BLOMQVIST, Florian STOFFEL, Patrick AICHROTH, Christian WEIGEL, 2017. Applying Data Science to Criminal Intelligence AnalysisBibTex
@techreport{Qazi2017Apply-45078, year={2017}, series={VALCRI White Paper Series}, title={Applying Data Science to Criminal Intelligence Analysis}, number={VALCRI-WP-2017-003}, url={http://valcri.org/valcri/applying-data-science-to-criminal-intelligence-analysis/}, author={Qazi, Nadeem and Zhang, Leishi and Blomqvist, Eva and Stoffel, Florian and Aichroth, Patrick and Weigel, Christian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45078"> <dc:contributor>Blomqvist, Eva</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">A major challenge of criminal intelligence analysis is to process large amount of semi-structured or unstructured data such as textual documents and videos and to extract useful information out of the data to support semantic search, sense-making and decision making. In VALCI, a computational framework is developed that incorporates concept extraction, ontology use and evolution, associative search, and image/ video analysis for semantic search and knowledge discovery. In this whitepaper we introduce the key concepts have been applied and their corresponding technologies that have been developed to tackle the challenge.</dcterms:abstract> <dc:creator>Zhang, Leishi</dc:creator> <dc:creator>Weigel, Christian</dc:creator> <dc:contributor>Aichroth, Patrick</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45078"/> <dc:contributor>Weigel, Christian</dc:contributor> <dc:contributor>Qazi, Nadeem</dc:contributor> <dc:creator>Qazi, Nadeem</dc:creator> <dc:creator>Blomqvist, Eva</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:creator>Stoffel, Florian</dc:creator> <dcterms:issued>2017</dcterms:issued> <dc:contributor>Stoffel, Florian</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-18T14:43:28Z</dc:date> <dcterms:title>Applying Data Science to Criminal Intelligence Analysis</dcterms:title> <dc:contributor>Zhang, Leishi</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Aichroth, Patrick</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-18T14:43:28Z</dcterms:available> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
URL der Originalveröffentl.
Prüfdatum der URL
2019-02-18
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja