Publikation:

Applying Data Science to Criminal Intelligence Analysis

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Qazi, Nadeem
Blomqvist, Eva
Aichroth, Patrick
Weigel, Christian

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

VALCRI White Paper Series; VALCRI-WP-2017-003

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

A major challenge of criminal intelligence analysis is to process large amount of semi-structured or unstructured data such as textual documents and videos and to extract useful information out of the data to support semantic search, sense-making and decision making. In VALCI, a computational framework is developed that incorporates concept extraction, ontology use and evolution, associative search, and image/ video analysis for semantic search and knowledge discovery. In this whitepaper we introduce the key concepts have been applied and their corresponding technologies that have been developed to tackle the challenge.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Criminal Intelligence, Semantic Search, Evolving Knowledge Base, Ontology, Associative Search, Concept Extraction, Video Analysis

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690QAZI, Nadeem, Leishi ZHANG, Eva BLOMQVIST, Florian STOFFEL, Patrick AICHROTH, Christian WEIGEL, 2017. Applying Data Science to Criminal Intelligence Analysis
BibTex
@techreport{Qazi2017Apply-45078,
  year={2017},
  series={VALCRI White Paper Series},
  title={Applying Data Science to Criminal Intelligence Analysis},
  number={VALCRI-WP-2017-003},
  url={http://valcri.org/valcri/applying-data-science-to-criminal-intelligence-analysis/},
  author={Qazi, Nadeem and Zhang, Leishi and Blomqvist, Eva and Stoffel, Florian and Aichroth, Patrick and Weigel, Christian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45078">
    <dc:contributor>Blomqvist, Eva</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">A major challenge of criminal intelligence analysis is to process large amount of semi-structured or unstructured data such as textual documents and videos and to extract useful information out of the data to support semantic search, sense-making and decision making. In VALCI, a computational framework is developed that incorporates concept extraction, ontology use and evolution, associative search, and image/ video analysis for semantic search and knowledge discovery. In this whitepaper we introduce the key concepts have been applied and their corresponding technologies that have been developed to tackle the challenge.</dcterms:abstract>
    <dc:creator>Zhang, Leishi</dc:creator>
    <dc:creator>Weigel, Christian</dc:creator>
    <dc:contributor>Aichroth, Patrick</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45078"/>
    <dc:contributor>Weigel, Christian</dc:contributor>
    <dc:contributor>Qazi, Nadeem</dc:contributor>
    <dc:creator>Qazi, Nadeem</dc:creator>
    <dc:creator>Blomqvist, Eva</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:creator>Stoffel, Florian</dc:creator>
    <dcterms:issued>2017</dcterms:issued>
    <dc:contributor>Stoffel, Florian</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-18T14:43:28Z</dc:date>
    <dcterms:title>Applying Data Science to Criminal Intelligence Analysis</dcterms:title>
    <dc:contributor>Zhang, Leishi</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Aichroth, Patrick</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-18T14:43:28Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2019-02-18

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen