Publikation:

Quantifying Search Bias : Investigating Sources of Bias for Political Searches in Social Media

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Eslami, Motahhare
Messias, Johnnatan
Zafar, Muhammad Bilal
Ghosh, Saptarshi
Gummadi, Krishna P.
Karahalios, Karrie

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

LEE, Charlotte P., ed. and others. CSCW '17 : Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. New York, NY: ACM, 2017, pp. 417-432. ISBN 978-1-4503-4335-0. Available under: doi: 10.1145/2998181.2998321

Zusammenfassung

Search systems in online social media sites are frequently used to find information about ongoing events and people. For topics with multiple competing perspectives, such as political events or political candidates, bias in the top ranked results significantly shapes public opinion. However, bias does not emerge from an algorithm alone. It is important to distinguish between the bias that arises from the data that serves as the input to the ranking system and the bias that arises from the ranking system itself. In this paper, we propose a framework to quantify these distinct biases and apply this framework to politics-related queries on Twitter. We found that both the input data and the ranking system contribute significantly to produce varying amounts of bias in the search results and in different ways. We discuss the consequences of these biases and possible mechanisms to signal this bias in social media search systems' interfaces.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

CSCW '17: 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, 25. Feb. 2017 - 1. März 2017, Portland, Oregon
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KULSHRESTHA, Juhi, Motahhare ESLAMI, Johnnatan MESSIAS, Muhammad Bilal ZAFAR, Saptarshi GHOSH, Krishna P. GUMMADI, Karrie KARAHALIOS, 2017. Quantifying Search Bias : Investigating Sources of Bias for Political Searches in Social Media. CSCW '17: 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. Portland, Oregon, 25. Feb. 2017 - 1. März 2017. In: LEE, Charlotte P., ed. and others. CSCW '17 : Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. New York, NY: ACM, 2017, pp. 417-432. ISBN 978-1-4503-4335-0. Available under: doi: 10.1145/2998181.2998321
BibTex
@inproceedings{Kulshrestha2017-04-05T10:12:56ZQuant-53945,
  year={2017},
  doi={10.1145/2998181.2998321},
  title={Quantifying Search Bias : Investigating Sources of Bias for Political Searches in Social Media},
  isbn={978-1-4503-4335-0},
  publisher={ACM},
  address={New York, NY},
  booktitle={CSCW '17 : Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing},
  pages={417--432},
  editor={Lee, Charlotte P.},
  author={Kulshrestha, Juhi and Eslami, Motahhare and Messias, Johnnatan and Zafar, Muhammad Bilal and Ghosh, Saptarshi and Gummadi, Krishna P. and Karahalios, Karrie}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53945">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-10T12:29:19Z</dcterms:available>
    <dc:creator>Ghosh, Saptarshi</dc:creator>
    <dc:contributor>Gummadi, Krishna P.</dc:contributor>
    <dcterms:issued>2017-04-05T10:12:56Z</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Karahalios, Karrie</dc:contributor>
    <dc:contributor>Zafar, Muhammad Bilal</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Messias, Johnnatan</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53945"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:abstract xml:lang="eng">Search systems in online social media sites are frequently used to find information about ongoing events and people. For topics with multiple competing perspectives, such as political events or political candidates, bias in the top ranked results significantly shapes public opinion. However, bias does not emerge from an algorithm alone. It is important to distinguish between the bias that arises from the data that serves as the input to the ranking system and the bias that arises from the ranking system itself. In this paper, we propose a framework to quantify these distinct biases and apply this framework to politics-related queries on Twitter. We found that both the input data and the ranking system contribute significantly to produce varying amounts of bias in the search results and in different ways. We discuss the consequences of these biases and possible mechanisms to signal this bias in social media search systems' interfaces.</dcterms:abstract>
    <dc:contributor>Eslami, Motahhare</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Messias, Johnnatan</dc:creator>
    <dc:contributor>Kulshrestha, Juhi</dc:contributor>
    <dc:contributor>Ghosh, Saptarshi</dc:contributor>
    <dcterms:title>Quantifying Search Bias : Investigating Sources of Bias for Political Searches in Social Media</dcterms:title>
    <dc:creator>Kulshrestha, Juhi</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Zafar, Muhammad Bilal</dc:creator>
    <dc:creator>Eslami, Motahhare</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-10T12:29:19Z</dc:date>
    <dc:creator>Karahalios, Karrie</dc:creator>
    <dc:creator>Gummadi, Krishna P.</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen