Quantifying Search Bias : Investigating Sources of Bias for Political Searches in Social Media
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Search systems in online social media sites are frequently used to find information about ongoing events and people. For topics with multiple competing perspectives, such as political events or political candidates, bias in the top ranked results significantly shapes public opinion. However, bias does not emerge from an algorithm alone. It is important to distinguish between the bias that arises from the data that serves as the input to the ranking system and the bias that arises from the ranking system itself. In this paper, we propose a framework to quantify these distinct biases and apply this framework to politics-related queries on Twitter. We found that both the input data and the ranking system contribute significantly to produce varying amounts of bias in the search results and in different ways. We discuss the consequences of these biases and possible mechanisms to signal this bias in social media search systems' interfaces.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KULSHRESTHA, Juhi, Motahhare ESLAMI, Johnnatan MESSIAS, Muhammad Bilal ZAFAR, Saptarshi GHOSH, Krishna P. GUMMADI, Karrie KARAHALIOS, 2017. Quantifying Search Bias : Investigating Sources of Bias for Political Searches in Social Media. CSCW '17: 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. Portland, Oregon, 25. Feb. 2017 - 1. März 2017. In: LEE, Charlotte P., ed. and others. CSCW '17 : Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. New York, NY: ACM, 2017, pp. 417-432. ISBN 978-1-4503-4335-0. Available under: doi: 10.1145/2998181.2998321BibTex
@inproceedings{Kulshrestha2017-04-05T10:12:56ZQuant-53945, year={2017}, doi={10.1145/2998181.2998321}, title={Quantifying Search Bias : Investigating Sources of Bias for Political Searches in Social Media}, isbn={978-1-4503-4335-0}, publisher={ACM}, address={New York, NY}, booktitle={CSCW '17 : Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing}, pages={417--432}, editor={Lee, Charlotte P.}, author={Kulshrestha, Juhi and Eslami, Motahhare and Messias, Johnnatan and Zafar, Muhammad Bilal and Ghosh, Saptarshi and Gummadi, Krishna P. and Karahalios, Karrie} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53945"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-10T12:29:19Z</dcterms:available> <dc:creator>Ghosh, Saptarshi</dc:creator> <dc:contributor>Gummadi, Krishna P.</dc:contributor> <dcterms:issued>2017-04-05T10:12:56Z</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Karahalios, Karrie</dc:contributor> <dc:contributor>Zafar, Muhammad Bilal</dc:contributor> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Messias, Johnnatan</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53945"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:abstract xml:lang="eng">Search systems in online social media sites are frequently used to find information about ongoing events and people. For topics with multiple competing perspectives, such as political events or political candidates, bias in the top ranked results significantly shapes public opinion. However, bias does not emerge from an algorithm alone. It is important to distinguish between the bias that arises from the data that serves as the input to the ranking system and the bias that arises from the ranking system itself. In this paper, we propose a framework to quantify these distinct biases and apply this framework to politics-related queries on Twitter. We found that both the input data and the ranking system contribute significantly to produce varying amounts of bias in the search results and in different ways. We discuss the consequences of these biases and possible mechanisms to signal this bias in social media search systems' interfaces.</dcterms:abstract> <dc:contributor>Eslami, Motahhare</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Messias, Johnnatan</dc:creator> <dc:contributor>Kulshrestha, Juhi</dc:contributor> <dc:contributor>Ghosh, Saptarshi</dc:contributor> <dcterms:title>Quantifying Search Bias : Investigating Sources of Bias for Political Searches in Social Media</dcterms:title> <dc:creator>Kulshrestha, Juhi</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:creator>Zafar, Muhammad Bilal</dc:creator> <dc:creator>Eslami, Motahhare</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-10T12:29:19Z</dc:date> <dc:creator>Karahalios, Karrie</dc:creator> <dc:creator>Gummadi, Krishna P.</dc:creator> </rdf:Description> </rdf:RDF>