Publikation:

Incremental Visual Text Analytics of News Story Development

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

WONG, Pak Chung, ed. and others. Visualization and Data Analysis 2012. SPIE, 2012, pp. 829407. SPIE Proceedings. 8294. Available under: doi: 10.1117/12.912456

Zusammenfassung

Online news sources produce thousands of news articles every day, reporting on local and global real-world events. New information quickly replaces the old, making it difficult for readers to put current events in the context of the past. Additionally, the stories have very complex relationships and characteristics that are difficult to model: they can be weakly or strongly connected, or they can merge or split over time. In this paper, we present a visual analytics system for exploration of news topics in dynamic information streams, which combines interactive visualization and text mining techniques to facilitate the analysis of similar topics that split and merge over time. We employ text clustering techniques to automatically extract stories from online news streams and present a visualization that: 1) shows temporal characteristics of stories in di erent time frames with di erent level of detail; 2) allows incremental updates of the display without recalculating the visual features of the past data; 3) sorts the stories by minimizing clutter and overlap from edge crossings. By using interaction, stories can be filtered based on their duration and characteristics in order to be explored in full detail with details on demand. To demonstrate the usefulness of our system, case studies with real news data are presented and Show the capabilities for detailed dynamic text stream exploration.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IS&T/SPIE Electronic Imaging, Burlingame, California, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KRSTAJIC, Milos, Mohammad NAJM-ARAGHI, Florian MANSMANN, Daniel A. KEIM, 2012. Incremental Visual Text Analytics of News Story Development. IS&T/SPIE Electronic Imaging. Burlingame, California, USA. In: WONG, Pak Chung, ed. and others. Visualization and Data Analysis 2012. SPIE, 2012, pp. 829407. SPIE Proceedings. 8294. Available under: doi: 10.1117/12.912456
BibTex
@inproceedings{Krstajic2012-06-19Incre-22596,
  year={2012},
  doi={10.1117/12.912456},
  title={Incremental Visual Text Analytics of News Story Development},
  number={8294},
  publisher={SPIE},
  series={SPIE Proceedings},
  booktitle={Visualization and Data Analysis 2012},
  editor={Wong, Pak Chung},
  author={Krstajic, Milos and Najm-Araghi, Mohammad and Mansmann, Florian and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22596">
    <dcterms:bibliographicCitation>Visualization and Data Analysis 2012 : Burlingame, California, USA, January 23-25, 2012 / Pak Chung Wong ... (eds.). - Bellingham, Wash. : SPIE, 2012. - Artikelnummer: 829407 . - (Proceedings of SPIE ; 8294 ). - ISBN 978-0-8194-8941-8</dcterms:bibliographicCitation>
    <dc:creator>Krstajic, Milos</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Incremental Visual Text Analytics of News Story Development</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-27T07:20:31Z</dc:date>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Najm-Araghi, Mohammad</dc:creator>
    <dc:contributor>Mansmann, Florian</dc:contributor>
    <dc:contributor>Najm-Araghi, Mohammad</dc:contributor>
    <dc:contributor>Krstajic, Milos</dc:contributor>
    <dcterms:issued>2012-06-19</dcterms:issued>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22596"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Mansmann, Florian</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-27T07:20:31Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Online news sources produce thousands of news articles every day, reporting on local and global real-world events. New information quickly replaces the old, making it difficult for readers to put current events in the context of the past. Additionally, the stories have very complex relationships and characteristics that are difficult to model: they can be weakly or strongly connected, or they can merge or split over time. In this paper, we present a visual analytics system for exploration of news topics in dynamic information streams, which combines interactive visualization and text mining techniques to facilitate the analysis of similar topics that split and merge over time. We employ text clustering techniques to automatically extract stories from online news streams and present a visualization that: 1) shows temporal characteristics of stories in di erent time frames with di erent level of detail; 2) allows incremental updates of the display without recalculating the visual features of the past data; 3) sorts the stories by minimizing clutter and overlap from edge crossings. By using interaction, stories can be filtered based on their duration and characteristics in order to be explored in full detail with details on demand. To demonstrate the usefulness of our system, case studies with real news data are presented and Show the capabilities for detailed dynamic text stream exploration.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen