Attosecond Electron Transport in Plasmonic Nanostructures

Lade...
Vorschaubild
Dateien
Rybka_2-fft857nlj6tv7.pdf
Rybka_2-fft857nlj6tv7.pdfGröße: 35.41 MBDownloads: 301
Datum
2019
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
978-3-8440-6398-1
Bibliografische Daten
Verlag
Aachen: Shaker Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

This thesis presents a demonstration of controlling electric current between two nanoscaled electrodes on an attosecond time scale (the scale of 10-18 seconds). The ultrafast electrical control is enabled by harnessing the carrier wave of near-infrared light pulses as an alternating-current bias. Light pulses spanning only a single oscillation cycle, serving as an ultrashort voltage bias, are focused on a single nanoelectrode pair. The exact shape of the electric field cycle determines how single electrons are being transported between the two electrodes. The lightwave-driven current takes place for a period of only a few hundred attoseconds and its direction can be freely set via the carrier-envelope phase (CEP) of the pulses.

The thesis is presented in five chapters. After an introductory chapter, the thesis provides the required background knowledge. Vital to the experimental success was to build an innovative laser system. It is based on the sophisticated Erbium-fiber laser technology and generates 4-femtosecond-long light pulses in the near-infrared spectral range, with a pulse duration of excactly a single optical cycle. The system operates at a high pulse repetition rate of 80 MHz and passively stabilizes the CEP. An additional novelty is that the CEP can be freely adjusted. The laser source is described in the third chapter. The fourth addresses the manufacturing and electrical characterization of the nanoelectrodes. The fabrication was carried out by electron beam lithography with a resolution reaching the limit set by this technology. A gap size of 8 nanometers between the electrodes is achieved in a reproducible manner. The experimental results on the optically driven attosecond electron transport are subject of the last chapter.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Attosecond science, electron dynamics, tunneling, metal nanostructures, ultrafast plasmonics, femtosecond technology, ultrafast fiber lasers, single-cycle pulse, passive phase stabilization
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690RYBKA, Tobias, 2019. Attosecond Electron Transport in Plasmonic Nanostructures [Dissertation]. Konstanz: University of Konstanz. Aachen: Shaker Verlag. ISBN 978-3-8440-6398-1
BibTex
@phdthesis{Rybka2019Attos-44776,
  year={2019},
  doi={10.2370/9783844063981},
  publisher={Shaker Verlag},
  title={Attosecond Electron Transport in Plasmonic Nanostructures},
  author={Rybka, Tobias},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44776">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44776/3/Rybka_2-fft857nlj6tv7.pdf"/>
    <dc:language>eng</dc:language>
    <dc:publisher>Aachen</dc:publisher>
    <dcterms:issued>2019</dcterms:issued>
    <dc:contributor>Rybka, Tobias</dc:contributor>
    <bibo:issn>978-3-8440-6398-1</bibo:issn>
    <dc:publisher>Shaker Verlag</dc:publisher>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-30T12:08:13Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Attosecond Electron Transport in Plasmonic Nanostructures</dcterms:title>
    <dc:creator>Rybka, Tobias</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44776/3/Rybka_2-fft857nlj6tv7.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-30T12:08:13Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44776"/>
    <dcterms:abstract xml:lang="eng">This thesis presents a demonstration of controlling electric current between two nanoscaled electrodes on an attosecond time scale (the scale of 10&lt;sup&gt;-18&lt;/sup&gt; seconds). The ultrafast electrical control is enabled by harnessing the carrier wave of near-infrared light pulses as an alternating-current bias. Light pulses spanning only a single oscillation cycle, serving as an ultrashort voltage bias, are focused on a single nanoelectrode pair. The exact shape of the electric field cycle determines how single electrons are being transported between the two electrodes. The lightwave-driven current takes place for a period of only a few hundred attoseconds and its direction can be freely set via the carrier-envelope phase (CEP) of the pulses.&lt;br /&gt;&lt;br /&gt;The thesis is presented in five chapters.&lt;sup&gt;&lt;/sup&gt; After an introductory chapter, the thesis provides the required background knowledge. Vital to the experimental success was to build an innovative laser system. It is based on the sophisticated Erbium-fiber laser technology and generates 4-femtosecond-long light pulses in the near-infrared spectral range, with a pulse duration of excactly a single optical cycle. The system operates at a high pulse repetition rate of 80 MHz and passively stabilizes the CEP. An additional novelty is that the CEP can be freely adjusted. The laser source is described in the third chapter. The fourth addresses the manufacturing and electrical characterization of the nanoelectrodes. The fabrication was carried out by electron beam lithography with a resolution reaching the limit set by this technology. A gap size of 8 nanometers between the electrodes is achieved in a reproducible manner. The experimental results on the optically driven attosecond electron transport are subject of the last chapter. &lt;sub&gt;&lt;/sub&gt;&lt;sup&gt;&lt;/sup&gt;&lt;sub&gt;&lt;/sub&gt;</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
May 11, 2018
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2018
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet