Publikation:

Attosecond Electron Transport in Plasmonic Nanostructures

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

978-3-8440-6398-1
Bibliografische Daten

Verlag

Aachen: Shaker Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This thesis presents a demonstration of controlling electric current between two nanoscaled electrodes on an attosecond time scale (the scale of 10-18 seconds). The ultrafast electrical control is enabled by harnessing the carrier wave of near-infrared light pulses as an alternating-current bias. Light pulses spanning only a single oscillation cycle, serving as an ultrashort voltage bias, are focused on a single nanoelectrode pair. The exact shape of the electric field cycle determines how single electrons are being transported between the two electrodes. The lightwave-driven current takes place for a period of only a few hundred attoseconds and its direction can be freely set via the carrier-envelope phase (CEP) of the pulses.

The thesis is presented in five chapters. After an introductory chapter, the thesis provides the required background knowledge. Vital to the experimental success was to build an innovative laser system. It is based on the sophisticated Erbium-fiber laser technology and generates 4-femtosecond-long light pulses in the near-infrared spectral range, with a pulse duration of excactly a single optical cycle. The system operates at a high pulse repetition rate of 80 MHz and passively stabilizes the CEP. An additional novelty is that the CEP can be freely adjusted. The laser source is described in the third chapter. The fourth addresses the manufacturing and electrical characterization of the nanoelectrodes. The fabrication was carried out by electron beam lithography with a resolution reaching the limit set by this technology. A gap size of 8 nanometers between the electrodes is achieved in a reproducible manner. The experimental results on the optically driven attosecond electron transport are subject of the last chapter.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Attosecond science, electron dynamics, tunneling, metal nanostructures, ultrafast plasmonics, femtosecond technology, ultrafast fiber lasers, single-cycle pulse, passive phase stabilization

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RYBKA, Tobias, 2019. Attosecond Electron Transport in Plasmonic Nanostructures [Dissertation]. Konstanz: University of Konstanz. Aachen: Shaker Verlag. ISBN 978-3-8440-6398-1
BibTex
@phdthesis{Rybka2019Attos-44776,
  year={2019},
  doi={10.2370/9783844063981},
  publisher={Shaker Verlag},
  title={Attosecond Electron Transport in Plasmonic Nanostructures},
  author={Rybka, Tobias},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44776">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44776/3/Rybka_2-fft857nlj6tv7.pdf"/>
    <dc:language>eng</dc:language>
    <dc:publisher>Aachen</dc:publisher>
    <dcterms:issued>2019</dcterms:issued>
    <dc:contributor>Rybka, Tobias</dc:contributor>
    <bibo:issn>978-3-8440-6398-1</bibo:issn>
    <dc:publisher>Shaker Verlag</dc:publisher>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-30T12:08:13Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Attosecond Electron Transport in Plasmonic Nanostructures</dcterms:title>
    <dc:creator>Rybka, Tobias</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44776/3/Rybka_2-fft857nlj6tv7.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-30T12:08:13Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44776"/>
    <dcterms:abstract xml:lang="eng">This thesis presents a demonstration of controlling electric current between two nanoscaled electrodes on an attosecond time scale (the scale of 10&lt;sup&gt;-18&lt;/sup&gt; seconds). The ultrafast electrical control is enabled by harnessing the carrier wave of near-infrared light pulses as an alternating-current bias. Light pulses spanning only a single oscillation cycle, serving as an ultrashort voltage bias, are focused on a single nanoelectrode pair. The exact shape of the electric field cycle determines how single electrons are being transported between the two electrodes. The lightwave-driven current takes place for a period of only a few hundred attoseconds and its direction can be freely set via the carrier-envelope phase (CEP) of the pulses.&lt;br /&gt;&lt;br /&gt;The thesis is presented in five chapters.&lt;sup&gt;&lt;/sup&gt; After an introductory chapter, the thesis provides the required background knowledge. Vital to the experimental success was to build an innovative laser system. It is based on the sophisticated Erbium-fiber laser technology and generates 4-femtosecond-long light pulses in the near-infrared spectral range, with a pulse duration of excactly a single optical cycle. The system operates at a high pulse repetition rate of 80 MHz and passively stabilizes the CEP. An additional novelty is that the CEP can be freely adjusted. The laser source is described in the third chapter. The fourth addresses the manufacturing and electrical characterization of the nanoelectrodes. The fabrication was carried out by electron beam lithography with a resolution reaching the limit set by this technology. A gap size of 8 nanometers between the electrodes is achieved in a reproducible manner. The experimental results on the optically driven attosecond electron transport are subject of the last chapter. &lt;sub&gt;&lt;/sub&gt;&lt;sup&gt;&lt;/sup&gt;&lt;sub&gt;&lt;/sub&gt;</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

May 11, 2018
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2018
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen