Publikation:

Cancer predictive studies

Lade...
Vorschaubild

Dateien

Amelio_2-fcbpjh1tg8x30.pdf
Amelio_2-fcbpjh1tg8x30.pdfGröße: 1.1 MBDownloads: 75

Datum

2020

Autor:innen

Bertolo, Riccardo
Bove, Pierluigi
Candi, Eleonora
Chiocchi, Marcello
Cipriani, Chiara
Di Daniele, Nicola
Ganini, Carlo
Juhl, Hartmut
Melino, Gerry
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Biology Direct. BioMed Central. 2020, 15, 18. eISSN 1745-6150. Available under: doi: 10.1186/s13062-020-00274-3

Zusammenfassung

The identification of individual or clusters of predictive genetic alterations might help in defining the outcome of cancer treatment, allowing for the stratification of patients into distinct cohorts for selective therapeutic protocols. Neuroblastoma (NB) is the most common extracranial childhood tumour, clinically defined in five distinct stages (1-4 & 4S), where stages 3-4 define chemotherapy-resistant, highly aggressive disease phases. NB is a model for geneticists and molecular biologists to classify genetic abnormalities and identify causative disease genes. Despite highly intensive basic research, improvements on clinical outcome have been predominantly observed for less aggressive cancers, that is stages 1,2 and 4S. Therefore, stages 3-4 NB are still complicated at the therapeutic level and require more intense fundamental research. Using neuroblastoma as a model system, here we herein outline how cancer prediction studies can help at steering preclinical and clinical research toward the identification and exploitation of specific genetic landscape. This might result in maximising the therapeutic success and minimizing harmful effects in cancer patients.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Neuroblastoma, Microbiota, Precision oncology, Omics

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690AMELIO, Ivano, Riccardo BERTOLO, Pierluigi BOVE, Eleonora CANDI, Marcello CHIOCCHI, Chiara CIPRIANI, Nicola DI DANIELE, Carlo GANINI, Hartmut JUHL, Gerry MELINO, 2020. Cancer predictive studies. In: Biology Direct. BioMed Central. 2020, 15, 18. eISSN 1745-6150. Available under: doi: 10.1186/s13062-020-00274-3
BibTex
@article{Amelio2020Cance-56994,
  year={2020},
  doi={10.1186/s13062-020-00274-3},
  title={Cancer predictive studies},
  volume={15},
  journal={Biology Direct},
  author={Amelio, Ivano and Bertolo, Riccardo and Bove, Pierluigi and Candi, Eleonora and Chiocchi, Marcello and Cipriani, Chiara and Di Daniele, Nicola and Ganini, Carlo and Juhl, Hartmut and Melino, Gerry},
  note={Article Number: 18}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56994">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-25T08:19:52Z</dc:date>
    <dc:contributor>Cipriani, Chiara</dc:contributor>
    <dc:contributor>Di Daniele, Nicola</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Juhl, Hartmut</dc:contributor>
    <dc:contributor>Amelio, Ivano</dc:contributor>
    <dc:contributor>Bove, Pierluigi</dc:contributor>
    <dc:creator>Melino, Gerry</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56994/3/Amelio_2-fcbpjh1tg8x30.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Melino, Gerry</dc:contributor>
    <dcterms:title>Cancer predictive studies</dcterms:title>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract xml:lang="eng">The identification of individual or clusters of predictive genetic alterations might help in defining the outcome of cancer treatment, allowing for the stratification of patients into distinct cohorts for selective therapeutic protocols. Neuroblastoma (NB) is the most common extracranial childhood tumour, clinically defined in five distinct stages (1-4 &amp; 4S), where stages 3-4 define chemotherapy-resistant, highly aggressive disease phases. NB is a model for geneticists and molecular biologists to classify genetic abnormalities and identify causative disease genes. Despite highly intensive basic research, improvements on clinical outcome have been predominantly observed for less aggressive cancers, that is stages 1,2 and 4S. Therefore, stages 3-4 NB are still complicated at the therapeutic level and require more intense fundamental research. Using neuroblastoma as a model system, here we herein outline how cancer prediction studies can help at steering preclinical and clinical research toward the identification and exploitation of specific genetic landscape. This might result in maximising the therapeutic success and minimizing harmful effects in cancer patients.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Cipriani, Chiara</dc:creator>
    <dc:contributor>Chiocchi, Marcello</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Bertolo, Riccardo</dc:contributor>
    <dc:contributor>Candi, Eleonora</dc:contributor>
    <dc:creator>Di Daniele, Nicola</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56994"/>
    <dc:creator>Candi, Eleonora</dc:creator>
    <dc:creator>Bove, Pierluigi</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56994/3/Amelio_2-fcbpjh1tg8x30.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-25T08:19:52Z</dcterms:available>
    <dc:creator>Amelio, Ivano</dc:creator>
    <dc:creator>Juhl, Hartmut</dc:creator>
    <dc:contributor>Ganini, Carlo</dc:contributor>
    <dc:creator>Chiocchi, Marcello</dc:creator>
    <dc:creator>Bertolo, Riccardo</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Ganini, Carlo</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen