Publikation: Dynamical Coulomb blockade theory of plasmon-mediated light emission from a tunnel junction
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Inelastic tunneling of electrons can generate the emission of photons with energies intuitively limited by the applied bias voltage. However, experiments indicate that more complex processes involving the interaction of electrons with plasmon polaritons lead to photon emission with overbias energies. We recently proposed a model of this observation in Phys. Rev. Lett. \textbf{113}, 066801 (2014), in analogy to the dynamical Coulomb blockade, originally developed for treating the electromagnetic environment in mesoscopic circuits. This model describes the correlated tunneling of two electrons interacting with a local plasmon-polariton mode, represented by a resonant circuit, and shows that the overbias emission is due to the non-Gaussian fluctuations. Here we extend our model to study the overbias emission at finite temperature. We find that the thermal smearing strongly masks the overbias emission. Hence, the detection of the correlated tunneling processes requires temperatures kBT much lower than the bias energy $eV$ and the plasmon energy $\hbar\omega_0, a condition which is fortunately realized experimentally.ℏω0Inelastic tunneling of electrons can generate the emission of photons with energies intuitively limited by the applied bias voltage. However, experiments indicate that more complex processes involving the interaction of electrons with plasmon polaritons lead to photon emission with overbias energies. We recently proposed a model of this observation in Phys. Rev. Lett. 113, 066801 (2014), in analogy to the dynamical Coulomb blockade, originally developed for treating the electromagnetic environment in mesoscopic circuits. This model describes the correlated tunneling of two electrons interacting with a local plasmon-polariton mode, represented by a resonant circuit, and shows that the overbias emission is due to the non-Gaussian fluctuations. Here we extend our model to study the overbias emission at finite temperature. We find that the thermal smearing strongly masks the overbias emission. Hence, the detection of the correlated tunneling processes requires temperatures kBT much lower than the bias energy eV and the plasmon energy ℏω0, a condition which is fortunately realized experimentally.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
XU, Fei, Cecilia HOLMQVIST, Gianluca RASTELLI, Wolfgang BELZIG, 2016. Dynamical Coulomb blockade theory of plasmon-mediated light emission from a tunnel junction. In: Physical Review B. 2016, 94(24), 245111. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.94.245111BibTex
@article{Xu2016-09-09T14:06:52ZDynam-36776, year={2016}, doi={10.1103/PhysRevB.94.245111}, title={Dynamical Coulomb blockade theory of plasmon-mediated light emission from a tunnel junction}, number={24}, volume={94}, issn={2469-9950}, journal={Physical Review B}, author={Xu, Fei and Holmqvist, Cecilia and Rastelli, Gianluca and Belzig, Wolfgang}, note={11 pages, 11 figures Article Number: 245111} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36776"> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-18T09:40:24Z</dc:date> <dc:creator>Rastelli, Gianluca</dc:creator> <dc:contributor>Xu, Fei</dc:contributor> <dc:contributor>Belzig, Wolfgang</dc:contributor> <dc:contributor>Rastelli, Gianluca</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-18T09:40:24Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:abstract xml:lang="eng">Inelastic tunneling of electrons can generate the emission of photons with energies intuitively limited by the applied bias voltage. However, experiments indicate that more complex processes involving the interaction of electrons with plasmon polaritons lead to photon emission with overbias energies. We recently proposed a model of this observation in Phys. Rev. Lett. \textbf{113}, 066801 (2014), in analogy to the dynamical Coulomb blockade, originally developed for treating the electromagnetic environment in mesoscopic circuits. This model describes the correlated tunneling of two electrons interacting with a local plasmon-polariton mode, represented by a resonant circuit, and shows that the overbias emission is due to the non-Gaussian fluctuations. Here we extend our model to study the overbias emission at finite temperature. We find that the thermal smearing strongly masks the overbias emission. Hence, the detection of the correlated tunneling processes requires temperatures k<sub>B</sub>T much lower than the bias energy $eV$ and the plasmon energy $\hbar\omega_0, a condition which is fortunately realized experimentally.ℏω0Inelastic tunneling of electrons can generate the emission of photons with energies intuitively limited by the applied bias voltage. However, experiments indicate that more complex processes involving the interaction of electrons with plasmon polaritons lead to photon emission with overbias energies. We recently proposed a model of this observation in Phys. Rev. Lett. 113, 066801 (2014), in analogy to the dynamical Coulomb blockade, originally developed for treating the electromagnetic environment in mesoscopic circuits. This model describes the correlated tunneling of two electrons interacting with a local plasmon-polariton mode, represented by a resonant circuit, and shows that the overbias emission is due to the non-Gaussian fluctuations. Here we extend our model to study the overbias emission at finite temperature. We find that the thermal smearing strongly masks the overbias emission. Hence, the detection of the correlated tunneling processes requires temperatures k<sub>B</sub>T much lower than the bias energy eV and the plasmon energy ℏω<sub>0</sub>, a condition which is fortunately realized experimentally.</dcterms:abstract> <dc:creator>Holmqvist, Cecilia</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:contributor>Holmqvist, Cecilia</dc:contributor> <dc:creator>Xu, Fei</dc:creator> <dcterms:issued>2016-09-09T14:06:52Z</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Belzig, Wolfgang</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36776"/> <dcterms:title>Dynamical Coulomb blockade theory of plasmon-mediated light emission from a tunnel junction</dcterms:title> </rdf:Description> </rdf:RDF>