Recognizable sets and Woodin cardinals : Computation beyond the constructible universe

dc.contributor.authorCarl, Merlin
dc.contributor.authorSchlicht, Philipp
dc.contributor.authorWelch, Philip
dc.date.accessioned2016-01-25T13:57:54Z
dc.date.available2016-01-25T13:57:54Z
dc.date.issued2015eng
dc.description.abstractWe call a subset of an ordinal λ recognizable if it is the unique subset x of λ for which some Turing machine with ordinal time and tape, which halts for all subsets of λ as input, halts with the final state 0. Equivalently, such a set is the unique subset x which satisfies a given Σ1 formula in L[x]. We prove several results about sets of ordinals recognizable from ordinal parameters by ordinal time Turing machines. Notably we show the following results from large cardinals.
(1) Computable sets are elements of L, while recognizable objects with infinite time computations appear up to the level of Woodin cardinals.
(2) A subset of a countable ordinal λ is in the recognizable closure for subsets of λ if and only if it is an element of M∞, where M∞ denotes the inner model obtained by iterating the least measure of M1 through the ordinals, and where the recognizable closure for subsets of λ is defined by closing under relative recognizability for subsets of λ.
eng
dc.description.versionpublishedeng
dc.identifier.arxiv1512.06101eng
dc.identifier.urihttps://kops.uni-konstanz.de/handle/123456789/32698
dc.language.isoengeng
dc.subjectLarge cardinals, ordinal Turing machines, recognizability, inner modelseng
dc.subject.ddc510eng
dc.titleRecognizable sets and Woodin cardinals : Computation beyond the constructible universeeng
dc.typeWORKINGPAPEReng
dspace.entity.typePublication
kops.flag.knbibliographytrue
temp.submission.doi
temp.submission.source

Dateien

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2018-02-05 08:51:51
1*
2016-01-25 13:57:54
* Ausgewählte Version