Publikation:

Showing the Equivalence of Two Training Algorithms - Part II

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

1998

Autor:innen

Fischer, Ingrid
Koch, Manuel

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227). IEEE, 1998, pp. 452-456. ISBN 0-7803-4859-1. Available under: doi: 10.1109/IJCNN.1998.682309

Zusammenfassung

In previous work Graph Transformations have been shown to offer a powerful way to formally specify Neural Networks and their corresponding training algorithms. It has also been shown how to use this formalism to prove properties of the used algorithms. In this paper Graph Transformations are used to show the equivalence of two training algorithms for Recurrent Neural Networks, Back Propagation Through Time and a variant of Real Time Backpropagation. In addition to this proof a whole class of related training algorithm emerges from the used formalism. In part I of this paper the formalization of the two algorithms is shown; part II then shows how Graph Transformations can be used to prove the equivalence of both algorithms.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

ICNN '98 - International Conference on Neural Networks, Anchorage, AK, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FISCHER, Ingrid, Manuel KOCH, Michael R. BERTHOLD, 1998. Showing the Equivalence of Two Training Algorithms - Part II. ICNN '98 - International Conference on Neural Networks. Anchorage, AK, USA. In: 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227). IEEE, 1998, pp. 452-456. ISBN 0-7803-4859-1. Available under: doi: 10.1109/IJCNN.1998.682309
BibTex
@inproceedings{Fischer1998Showi-24289,
  year={1998},
  doi={10.1109/IJCNN.1998.682309},
  title={Showing the Equivalence of Two Training Algorithms - Part II},
  isbn={0-7803-4859-1},
  publisher={IEEE},
  booktitle={1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227)},
  pages={452--456},
  author={Fischer, Ingrid and Koch, Manuel and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24289">
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:bibliographicCitation>The 1998 IEEE International Joint Conference on Neural Networks Proceedings : IEEE World Congress on Computational Intelligence : May 4-May 9, 1998, Anchorage, Alaska, USA / [general chair: Patrick K. Simpson]. - Piscataway : IEEE Service Center, 1998. - S. 452-456. - ISBN 0-7803-4859-1</dcterms:bibliographicCitation>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-22T08:03:12Z</dcterms:available>
    <dcterms:issued>1998</dcterms:issued>
    <dc:contributor>Fischer, Ingrid</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-08-22T08:03:12Z</dc:date>
    <dc:contributor>Koch, Manuel</dc:contributor>
    <dcterms:abstract xml:lang="eng">In previous work Graph Transformations have been shown to offer a powerful way to formally specify Neural Networks and their corresponding training algorithms. It has also been shown how to use this formalism to prove properties of the used algorithms. In this paper Graph Transformations are used to show the equivalence of two training algorithms for Recurrent Neural Networks, Back Propagation Through Time and a variant of Real Time Backpropagation. In addition to this proof a whole class of related training algorithm emerges from the used formalism. In part I of this paper the formalization of the two algorithms is shown; part II then shows how Graph Transformations can be used to prove the equivalence of both algorithms.</dcterms:abstract>
    <dc:creator>Fischer, Ingrid</dc:creator>
    <dc:creator>Koch, Manuel</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24289"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:title>Showing the Equivalence of Two Training Algorithms - Part II</dcterms:title>
    <dc:creator>Berthold, Michael R.</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen