Global adapted solution of one-dimensional backward stochastic Riccati equations, with application to the mean-variance hedging

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2002
Autor:innen
Tang, Shanjian
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Stochastic Processes and their Applications. 2002, 97(2), pp. 255-288. ISSN 0304-4149. Available under: doi: 10.1016/S0304-4149(01)00133-8
Zusammenfassung

Backward stochastic Riccati equations are motivated by the solution of general linear quadratic optimal stochastic control problems with random coefficients, and the solution has been open in the general case. One distinguishing difficult feature is that the drift contains a quadratic term of the second unknown variable. In this paper, we obtain the global existence and uniqueness result for a general one-dimensional backward stochastic Riccati equation. This solves the one-dimensional case of Bismut–Peng's problem which was initially proposed by Bismut (Lecture Notes in Math. 649 (1978) 180). We use an approximation technique by constructing a sequence of monotone drifts and then passing to the limit. We make full use of the special structure of the underlying Riccati equation. The singular case is also discussed. Finally, the above results are applied to solve the mean–variance hedging problem with general random market conditions.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KOHLMANN, Michael, Shanjian TANG, 2002. Global adapted solution of one-dimensional backward stochastic Riccati equations, with application to the mean-variance hedging. In: Stochastic Processes and their Applications. 2002, 97(2), pp. 255-288. ISSN 0304-4149. Available under: doi: 10.1016/S0304-4149(01)00133-8
BibTex
@article{Kohlmann2002Globa-25840,
  year={2002},
  doi={10.1016/S0304-4149(01)00133-8},
  title={Global adapted solution of one-dimensional backward stochastic Riccati equations, with application to the mean-variance hedging},
  number={2},
  volume={97},
  issn={0304-4149},
  journal={Stochastic Processes and their Applications},
  pages={255--288},
  author={Kohlmann, Michael and Tang, Shanjian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25840">
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Backward stochastic Riccati equations are motivated by the solution of general linear quadratic optimal stochastic control problems with random coefficients, and the solution has been open in the general case. One distinguishing difficult feature is that the drift contains a quadratic term of the second unknown variable. In this paper, we obtain the global existence and uniqueness result for a general one-dimensional backward stochastic Riccati equation. This solves the one-dimensional case of Bismut–Peng's problem which was initially proposed by Bismut (Lecture Notes in Math. 649 (1978) 180). We use an approximation technique by constructing a sequence of monotone drifts and then passing to the limit. We make full use of the special structure of the underlying Riccati equation. The singular case is also discussed. Finally, the above results are applied to solve the mean–variance hedging problem with general random market conditions.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Kohlmann, Michael</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25840"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:bibliographicCitation>Stochastic Processes and their Applications ; 97 (2002), 2. - S. 255-288</dcterms:bibliographicCitation>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Tang, Shanjian</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Global adapted solution of one-dimensional backward stochastic Riccati equations, with application to the mean-variance hedging</dcterms:title>
    <dc:creator>Tang, Shanjian</dc:creator>
    <dc:creator>Kohlmann, Michael</dc:creator>
    <dcterms:issued>2002</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-16T08:37:06Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-16T08:37:06Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen