Fields with few types

Loading...
Thumbnail Image
Date
2014
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
The Journal of Symbolic Logic ; 78 (2014), 01. - pp. 72-84. - ISSN 0022-4812
Abstract
According to O. Belegradek, a first order structure is weakly small if there are countably many 1-types over any of its finite subset. We show the following results. A field extension of finite degree of an infinite weakly small field has no Artin-Schreier extension. A weakly small field of characteristic 2 is finite or algebraically closed. A weakly small division ring of positive characteristic is locally finite dimensional over its centre. A weakly small division ring of characteristic 2 is a field.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Small,weakly small,field,Artin-Schreier extension,Cantor-Bendixson rank,local descending chain condition.
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690MILLIET, Cedric, 2014. Fields with few types. In: The Journal of Symbolic Logic. 78(01), pp. 72-84. ISSN 0022-4812. Available under: doi: 10.2178/jsl.7801050
BibTex
@article{Milliet2014Field-26608,
  year={2014},
  doi={10.2178/jsl.7801050},
  title={Fields with few types},
  number={01},
  volume={78},
  issn={0022-4812},
  journal={The Journal of Symbolic Logic},
  pages={72--84},
  author={Milliet, Cedric}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26608">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26608/2/Milliet_266083.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2014</dcterms:issued>
    <dc:contributor>Milliet, Cedric</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-27T12:36:45Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26608"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-27T12:36:45Z</dc:date>
    <dc:creator>Milliet, Cedric</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">According to O. Belegradek, a first order structure is weakly small if there are countably many 1-types over any of its finite subset. We show the following results. A field extension of finite degree of an infinite weakly small field has no Artin-Schreier extension. A weakly small field of characteristic 2 is finite or algebraically closed. A weakly small division ring of positive characteristic is locally finite dimensional over its centre. A weakly small division ring of characteristic 2 is a field.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:bibliographicCitation>The Journal of Symbolic Logic ; 78 (2013), 1. - S. 72-84</dcterms:bibliographicCitation>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26608/2/Milliet_266083.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Fields with few types</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed