Publikation:

Modelling animal social networks : New solutions and future directions

Lade...
Vorschaubild

Dateien

Farine_2-evqt5r6ht6pu4.pdf
Farine_2-evqt5r6ht6pu4.pdfGröße: 115.85 KBDownloads: 3

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

European Union (EU): 850859

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Animal Ecology. Wiley. 2024, 93(3), S. 250-253. ISSN 0021-8790. eISSN 1365-2656. Verfügbar unter: doi: 10.1111/1365-2656.14049

Zusammenfassung

Research Highlight: Ross, C. T., McElreath, R., & Redhead, D. (2023). Modelling animal network data in R using STRAND. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.14021 [Titel anhand dieser DOI in Citavi-Projekt übernehmen] . One of the most important insights in ecology over the past decade has been that the social connections among animals affect a wide range of ecological and evolutionary processes. However, despite over 20 years of study effort on this topic, generating knowledge from data on social associations and interactions remains fraught with problems. Redhead et al. present an R package—STRAND—that extends the current animal social network analysis toolbox in two ways. First, they provide a simple R interfaces to implement generative network models, which are an alternative to regression approaches that draw inference by simulating the data-generating process. Second, they implement these models in a Bayesian framework, allowing uncertainty in the observation process to be carried through to hypothesis testing. STRAND therefore fills an important gap for hypothesis testing using network data. However, major challenges remain, and while STRAND represents an important advance, generating robust results continues to require careful study design, considerations in terms of statistical methods and a plurality of approaches.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690FARINE, Damien R., 2024. Modelling animal social networks : New solutions and future directions. In: Journal of Animal Ecology. Wiley. 2024, 93(3), S. 250-253. ISSN 0021-8790. eISSN 1365-2656. Verfügbar unter: doi: 10.1111/1365-2656.14049
BibTex
@article{Farine2024-03Model-69172,
  year={2024},
  doi={10.1111/1365-2656.14049},
  title={Modelling animal social networks : New solutions and future directions},
  number={3},
  volume={93},
  issn={0021-8790},
  journal={Journal of Animal Ecology},
  pages={250--253},
  author={Farine, Damien R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69172">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract>Research Highlight: Ross, C. T., McElreath, R., &amp; Redhead, D. (2023). Modelling animal network data in R using STRAND. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.14021 [Titel anhand dieser DOI in Citavi-Projekt übernehmen] . One of the most important insights in ecology over the past decade has been that the social connections among animals affect a wide range of ecological and evolutionary processes. However, despite over 20 years of study effort on this topic, generating knowledge from data on social associations and interactions remains fraught with problems. Redhead et al. present an R package—STRAND—that extends the current animal social network analysis toolbox in two ways. First, they provide a simple R interfaces to implement generative network models, which are an alternative to regression approaches that draw inference by simulating the data-generating process. Second, they implement these models in a Bayesian framework, allowing uncertainty in the observation process to be carried through to hypothesis testing. STRAND therefore fills an important gap for hypothesis testing using network data. However, major challenges remain, and while STRAND represents an important advance, generating robust results continues to require careful study design, considerations in terms of statistical methods and a plurality of approaches.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69172"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69172/1/Farine_2-evqt5r6ht6pu4.pdf"/>
    <dc:contributor>Farine, Damien R.</dc:contributor>
    <dcterms:issued>2024-03</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>Modelling animal social networks : New solutions and future directions</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69172/1/Farine_2-evqt5r6ht6pu4.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-26T06:31:36Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-26T06:31:36Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:language>eng</dc:language>
    <dc:creator>Farine, Damien R.</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen