Epitope structure and binding affinity of single chain llama anti-ß-amyloid antibodies revealed by proteolytic excision affinity-mass spectrometry

No Thumbnail Available
Files
There are no files associated with this item.
Date
2013
Authors
Vincke, Cécile
Czaplewska, Paulina
Muyldermans, Serge
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Journal of Molecular Recognition ; 26 (2013), 1. - pp. 1-9. - ISSN 0952-3499. - eISSN 1099-1352
Abstract
ß-Amyloid (Aß) immunotherapy has become a promising strategy for reducing the level of Aß in brain. New immunological approaches have been recently proposed for rapid, early diagnosis, and molecular treatment of neurodegenerative diseases related to Alzheimer’s Disease (AD). The combination of proteolytic epitope excision and extraction and mass spectrometry using digestion with various proteases has been shown to be an efficient tool for the identification and molecular characterization of antigenic determinants. Here, we report the identification of the Aß epitope recognized by the variable domain of single chain llama anti-Aß-antibodies, termed Aß-nanobodies, that have been discovered in the blood of camelids and found to be promising candidates for immunotherapy of AD. The epitope recognized by two Aß-specific nanobodies was identified by proteolytic epitope extraction- and excision-mass spectrometry using a series of proteases (trypsin, chymotrypsin,GluC-protease, and LysC-protease). Matrix-assisted laser desorption ionization – mass spectrometric analysis of the affinity – elution fraction provided the epitope, Aß(17–28), in the mid- to carboxy-terminal domain of Aß, which has been shown to exert an Aß-fibril inhibiting effect. Affinity studies of the synthetic epitope confirmed that the Aß(17–28) peptide is the minimal fragment that binds to the nanobodies. The interactions between the nanobodies and full length Aß(1–40) or Aß-peptides containing or lacking the epitope sequence were further characterized by enzyme linked immunosorbent assay and bioaffinity analysis. Determinations of binding affinities between the Aß-nanobodies and Aß(1–40) and the Aß(17–28) epitope provided KD values of approximately 150 and 700 nmol, respectively. Thus, the knowledge of the epitope may be highly useful for future studies of Aß-aggregation (oligomerization and fibril formation) and for designing new aggregation inhibitors.
Summary in another language
Subject (DDC)
540 Chemistry
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690PARASCHIV, Gabriela-Ioana, Cécile VINCKE, Paulina CZAPLEWSKA, Marilena MANEA, Serge MUYLDERMANS, Michael PRZYBYLSKI, 2013. Epitope structure and binding affinity of single chain llama anti-ß-amyloid antibodies revealed by proteolytic excision affinity-mass spectrometry. In: Journal of Molecular Recognition. 26(1), pp. 1-9. ISSN 0952-3499. eISSN 1099-1352. Available under: doi: 10.1002/jmr.2210
BibTex
@article{Paraschiv2013-01Epito-21147,
  year={2013},
  doi={10.1002/jmr.2210},
  title={Epitope structure and binding affinity of single chain llama anti-ß-amyloid antibodies revealed by proteolytic excision affinity-mass spectrometry},
  number={1},
  volume={26},
  issn={0952-3499},
  journal={Journal of Molecular Recognition},
  pages={1--9},
  author={Paraschiv, Gabriela-Ioana and Vincke, Cécile and Czaplewska, Paulina and Manea, Marilena and Muyldermans, Serge and Przybylski, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/21147">
    <dcterms:title>Epitope structure and binding affinity of single chain llama anti-ß-amyloid antibodies revealed by proteolytic excision affinity-mass spectrometry</dcterms:title>
    <dc:contributor>Paraschiv, Gabriela-Ioana</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:contributor>Manea, Marilena</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-10T08:33:17Z</dc:date>
    <dc:contributor>Przybylski, Michael</dc:contributor>
    <dcterms:bibliographicCitation>Journal of Molecular Recognition ; 26 (2013), 1. - S. 1-9</dcterms:bibliographicCitation>
    <dcterms:issued>2013-01</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:creator>Manea, Marilena</dc:creator>
    <dc:creator>Muyldermans, Serge</dc:creator>
    <dc:contributor>Vincke, Cécile</dc:contributor>
    <dc:contributor>Czaplewska, Paulina</dc:contributor>
    <dc:contributor>Muyldermans, Serge</dc:contributor>
    <dc:creator>Vincke, Cécile</dc:creator>
    <dc:creator>Czaplewska, Paulina</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Paraschiv, Gabriela-Ioana</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Przybylski, Michael</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-10T08:33:17Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21147"/>
    <dcterms:abstract xml:lang="eng">ß-Amyloid (Aß) immunotherapy has become a promising strategy for reducing the level of Aß in brain. New immunological approaches have been recently proposed for rapid, early diagnosis, and molecular treatment of neurodegenerative diseases related to Alzheimer’s Disease (AD). The combination of proteolytic epitope excision and extraction and mass spectrometry using digestion with various proteases has been shown to be an efficient tool for the identification and molecular characterization of antigenic determinants. Here, we report the identification of the Aß epitope recognized by the variable domain of single chain llama anti-Aß-antibodies, termed Aß-nanobodies, that have been discovered in the blood of camelids and found to be promising candidates for immunotherapy of AD. The epitope recognized by two Aß-specific nanobodies was identified by proteolytic epitope extraction- and excision-mass spectrometry using a series of proteases (trypsin, chymotrypsin,GluC-protease, and LysC-protease). Matrix-assisted laser desorption ionization – mass spectrometric analysis of the affinity – elution fraction provided the epitope, Aß(17–28), in the mid- to carboxy-terminal domain of Aß, which has been shown to exert an Aß-fibril inhibiting effect. Affinity studies of the synthetic epitope confirmed that the Aß(17–28) peptide is the minimal fragment that binds to the nanobodies. The interactions between the nanobodies and full length Aß(1–40) or Aß-peptides containing or lacking the epitope sequence were further characterized by enzyme linked immunosorbent assay and bioaffinity analysis. Determinations of binding affinities between the Aß-nanobodies and Aß(1–40) and the Aß(17–28) epitope provided KD values of approximately 150 and 700 nmol, respectively. Thus, the knowledge of the epitope may be highly useful for future studies of Aß-aggregation (oligomerization and fibril formation) and for designing new aggregation inhibitors.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed