Global trade will accelerate plant invasions in emerging economies under climate change

Loading...
Thumbnail Image
Date
2015
Authors
Seebens, Hanno
Essl, Franz
Fuentes, Nicol
Moser, Dietmar
Pergl, Jan
Pyšek, Petr
Weber, Ewald
Winter, Marten
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Global Change Biology ; 21 (2015), 11. - pp. 4128-4140. - ISSN 1354-1013. - eISSN 1365-2486
Abstract
Trade plays a key role in the spread of alien species, and has arguably contributed to the recent enormous acceleration of biological invasions, thus homogenizing biotas world-wide. Combining data on 60-year trends of bilateral trade, as well as on biodiversity and climate, we modeled the global spread of plant species among 147 countries. The model results were compared with a recently compiled unique global data set on numbers of naturalized alien vascular plant species representing the most comprehensive collection of naturalized plant distributions currently available. The model identifies major source regions, introduction routes and hotspots of plant invasions that agree well with observed naturalized plant numbers. In contrast to common knowledge, we show that the 'Imperialist Dogma', stating that Europe has been a net exporter of naturalized plants since colonial times, does not hold for the past 60 years, when more naturalized plants were being imported to than exported from Europe. Our results highlight that the current distribution of naturalized plants is best predicted by socio-economic activities 20 years ago. We took advantage of the observed time lag and used trade developments until recent times to predict naturalized plant trajectories for the next two decades. This shows that particularly strong increases in naturalized plant numbers are expected in the next 20 years for emerging economies in megadiverse regions. The interaction with predicted future climate change will increase invasions in northern temperate countries and reduce them in tropical and (sub)tropical regions, yet not by enough to cancel out the trade-related increase.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
Imperialist Dogma, Model, alien vascular plants, bioinvasion, climate warming, global spread, network of plant invasion
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SEEBENS, Hanno, Franz ESSL, Wayne DAWSON, Nicol FUENTES, Dietmar MOSER, Jan PERGL, Petr PYŠEK, Mark VAN KLEUNEN, Ewald WEBER, Marten WINTER, Bernd BLASIUS, 2015. Global trade will accelerate plant invasions in emerging economies under climate change. In: Global Change Biology. 21(11), pp. 4128-4140. ISSN 1354-1013. eISSN 1365-2486. Available under: doi: 10.1111/gcb.13021
BibTex
@article{Seebens2015-11Globa-31599,
  year={2015},
  doi={10.1111/gcb.13021},
  title={Global trade will accelerate plant invasions in emerging economies under climate change},
  number={11},
  volume={21},
  issn={1354-1013},
  journal={Global Change Biology},
  pages={4128--4140},
  author={Seebens, Hanno and Essl, Franz and Dawson, Wayne and Fuentes, Nicol and Moser, Dietmar and Pergl, Jan and Pyšek, Petr and van Kleunen, Mark and Weber, Ewald and Winter, Marten and Blasius, Bernd}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31599">
    <dc:creator>Moser, Dietmar</dc:creator>
    <dc:contributor>van Kleunen, Mark</dc:contributor>
    <dc:contributor>Winter, Marten</dc:contributor>
    <dc:creator>Seebens, Hanno</dc:creator>
    <dc:contributor>Seebens, Hanno</dc:contributor>
    <dc:contributor>Fuentes, Nicol</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31599"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2015-11</dcterms:issued>
    <dc:contributor>Essl, Franz</dc:contributor>
    <dc:creator>Dawson, Wayne</dc:creator>
    <dc:contributor>Moser, Dietmar</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Winter, Marten</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31599/3/Seebens_0-298710.pdf"/>
    <dc:contributor>Pyšek, Petr</dc:contributor>
    <dc:contributor>Blasius, Bernd</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-08-19T11:44:19Z</dcterms:available>
    <dc:creator>van Kleunen, Mark</dc:creator>
    <dc:contributor>Pergl, Jan</dc:contributor>
    <dcterms:title>Global trade will accelerate plant invasions in emerging economies under climate change</dcterms:title>
    <dcterms:abstract xml:lang="eng">Trade plays a key role in the spread of alien species, and has arguably contributed to the recent enormous acceleration of biological invasions, thus homogenizing biotas world-wide. Combining data on 60-year trends of bilateral trade, as well as on biodiversity and climate, we modeled the global spread of plant species among 147 countries. The model results were compared with a recently compiled unique global data set on numbers of naturalized alien vascular plant species representing the most comprehensive collection of naturalized plant distributions currently available. The model identifies major source regions, introduction routes and hotspots of plant invasions that agree well with observed naturalized plant numbers. In contrast to common knowledge, we show that the 'Imperialist Dogma', stating that Europe has been a net exporter of naturalized plants since colonial times, does not hold for the past 60 years, when more naturalized plants were being imported to than exported from Europe. Our results highlight that the current distribution of naturalized plants is best predicted by socio-economic activities 20 years ago. We took advantage of the observed time lag and used trade developments until recent times to predict naturalized plant trajectories for the next two decades. This shows that particularly strong increases in naturalized plant numbers are expected in the next 20 years for emerging economies in megadiverse regions. The interaction with predicted future climate change will increase invasions in northern temperate countries and reduce them in tropical and (sub)tropical regions, yet not by enough to cancel out the trade-related increase.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-08-19T11:44:19Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31599/3/Seebens_0-298710.pdf"/>
    <dc:creator>Fuentes, Nicol</dc:creator>
    <dc:contributor>Weber, Ewald</dc:contributor>
    <dc:contributor>Dawson, Wayne</dc:contributor>
    <dc:creator>Essl, Franz</dc:creator>
    <dc:creator>Blasius, Bernd</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Pergl, Jan</dc:creator>
    <dc:creator>Pyšek, Petr</dc:creator>
    <dc:creator>Weber, Ewald</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed