Value Groups and Residue Fields of Models of Real Exponentiation

Lade...
Vorschaubild
Dateien
Krapp_2-emrbxdy6djw62.pdf
Krapp_2-emrbxdy6djw62.pdfGröße: 354.58 KBDownloads: 88
Datum
2019
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Logic & Analysis. Department of Philosophy, Carnegie Mellon University. 2019, 11(1). ISSN 1759-9008. Available under: doi: 10.4115/jla.2019.11.1
Zusammenfassung

Let F be an archimedean field, G a divisible ordered abelian group and h a group exponential on G. A triple (F,G,h) is realised in a non-archimedean exponential field (K,exp) if the residue field of K under the natural valuation is F and the induced exponential group of (K,exp) is (G,h). We give a full characterisation of all triples (F,G,h) which can be realised in a model of real exponentiation in the following two cases: i) G is countable. ii) G is of cardinality kappa and kappa-saturated for an uncountable regular cardinal kappa with kappa^(<kappa) = kappa.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
real exponentiation, exponential fields, exponential groups, Ominimal theories, formal power series
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690KRAPP, Lothar Sebastian, 2019. Value Groups and Residue Fields of Models of Real Exponentiation. In: Journal of Logic & Analysis. Department of Philosophy, Carnegie Mellon University. 2019, 11(1). ISSN 1759-9008. Available under: doi: 10.4115/jla.2019.11.1
BibTex
@article{Krapp2019Value-54697,
  year={2019},
  doi={10.4115/jla.2019.11.1},
  title={Value Groups and Residue Fields of Models of Real Exponentiation},
  number={1},
  volume={11},
  issn={1759-9008},
  journal={Journal of Logic & Analysis},
  author={Krapp, Lothar Sebastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54697">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-24T10:18:38Z</dc:date>
    <dcterms:issued>2019</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Krapp, Lothar Sebastian</dc:creator>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54697/3/Krapp_2-emrbxdy6djw62.pdf"/>
    <dcterms:title>Value Groups and Residue Fields of Models of Real Exponentiation</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54697"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54697/3/Krapp_2-emrbxdy6djw62.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-24T10:18:38Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Let F be an archimedean field, G a divisible ordered abelian group and h a group exponential on G. A triple (F,G,h) is realised in a non-archimedean exponential field (K,exp) if the residue field of K under the natural valuation is F and the induced exponential group of (K,exp) is (G,h). We give a full characterisation of all triples (F,G,h) which can be realised in a model of real exponentiation in the following two cases: i) G is countable. ii) G is of cardinality kappa and kappa-saturated for an uncountable regular cardinal kappa with kappa^(&lt;kappa) = kappa.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Krapp, Lothar Sebastian</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja