A current-driven single-atom memory

Loading...
Thumbnail Image
Date
2013
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
SFB 767 - TP C10 Control of magnetic nanostructures by spin currents and thermal gradients
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Nature Nanotechnology ; 8 (2013), 9. - pp. 645-648. - ISSN 1748-3387. - eISSN 1748-3395
Abstract
The possibility of fabricating electronic devices with functional building blocks of atomic size is a major driving force of nanotechnology. The key elements in electronic circuits are switches, usually realized by transistors, which can be configured to perform memory operations. Electronic switches have been miniaturized all the way down to the atomic scale. However, at such scales, three-terminal devices are technically challenging to implement. Here we show that a metallic atomic-scale contact can be operated as a reliable and fatigue- resistant two-terminal switch. We apply a careful electromigration protocol to toggle the conductance of an aluminium atomic contact between two well-defined values in the range of a few conductance quanta. Using the nonlinearities of the current–voltage characteristics caused by superconductivity in combination with molecular dynamics and quantum transport calculations, we provide evidence that the switching process is caused by the reversible rearrangement of single atoms. Owing to its hysteretic behaviour with two distinct states, this two-terminal switch can be used as a non-volatile information storage element.
Summary in another language
Subject (DDC)
530 Physics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SCHIRM, Christian, Manuel MATT, Fabian PAULY, Juan Carlos CUEVAS, Peter NIELABA, Elke SCHEER, 2013. A current-driven single-atom memory. In: Nature Nanotechnology. 8(9), pp. 645-648. ISSN 1748-3387. eISSN 1748-3395. Available under: doi: 10.1038/nnano.2013.170
BibTex
@article{Schirm2013-09curre-24364,
  year={2013},
  doi={10.1038/nnano.2013.170},
  title={A current-driven single-atom memory},
  number={9},
  volume={8},
  issn={1748-3387},
  journal={Nature Nanotechnology},
  pages={645--648},
  author={Schirm, Christian and Matt, Manuel and Pauly, Fabian and Cuevas, Juan Carlos and Nielaba, Peter and Scheer, Elke}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24364">
    <dc:creator>Scheer, Elke</dc:creator>
    <dc:contributor>Scheer, Elke</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24364/2/Schirm_243648.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-31T22:25:08Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-06T14:17:39Z</dc:date>
    <dc:creator>Matt, Manuel</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24364/2/Schirm_243648.pdf"/>
    <dcterms:title>A current-driven single-atom memory</dcterms:title>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24364"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Pauly, Fabian</dc:contributor>
    <dc:creator>Cuevas, Juan Carlos</dc:creator>
    <dc:contributor>Cuevas, Juan Carlos</dc:contributor>
    <dc:creator>Nielaba, Peter</dc:creator>
    <dc:creator>Pauly, Fabian</dc:creator>
    <dcterms:abstract xml:lang="eng">The possibility of fabricating electronic devices with functional building blocks of atomic size is a major driving force of nanotechnology. The key elements in electronic circuits are switches, usually realized by transistors, which can be configured to perform memory operations. Electronic switches have been miniaturized all the way down to the atomic scale. However, at such scales, three-terminal devices are technically challenging to implement. Here we show that a metallic atomic-scale contact can be operated as a reliable and fatigue- resistant two-terminal switch. We apply a careful electromigration protocol to toggle the conductance of an aluminium atomic contact between two well-defined values in the range of a few conductance quanta. Using the nonlinearities of the current–voltage characteristics caused by superconductivity in combination with molecular dynamics and quantum transport calculations, we provide evidence that the switching process is caused by the reversible rearrangement of single atoms. Owing to its hysteretic behaviour with two distinct states, this two-terminal switch can be used as a non-volatile information storage element.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:issued>2013-09</dcterms:issued>
    <dcterms:bibliographicCitation>Nature nanotechnology ; 8 (2013), 9. - S. 645–648</dcterms:bibliographicCitation>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Schirm, Christian</dc:creator>
    <dc:contributor>Schirm, Christian</dc:contributor>
    <dc:contributor>Nielaba, Peter</dc:contributor>
    <dc:contributor>Matt, Manuel</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed