Finite phylogenetic complexity of Zp and invariants for Z3
Finite phylogenetic complexity of Zp and invariants for Z3
Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
European Journal of Combinatorics ; 59 (2017). - S. 169-186. - Elsevier. - ISSN 0195-6698. - eISSN 1095-9971
Zusammenfassung
We study phylogenetic complexity of finite abelian groups - an invariant introduced by Sturmfels and Sullivant. The invariant is hard to compute - so far it was only known for Z2, in which case it equals 2. We prove that phylogenetic complexity of any group Zp, where p is prime, is finite. We also show, as conjectured by Sturmfels and Sullivant, that the phylogenetic complexity of Z3 equals 3.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
MICHALEK, Mateusz, 2017. Finite phylogenetic complexity of Zp and invariants for Z3. In: European Journal of Combinatorics. Elsevier. 59, pp. 169-186. ISSN 0195-6698. eISSN 1095-9971. Available under: doi: 10.1016/j.ejc.2016.08.007BibTex
@article{Michalek2017Finit-52581, year={2017}, doi={10.1016/j.ejc.2016.08.007}, title={Finite phylogenetic complexity of Z<sub>p</sub> and invariants for Z<sub>3</sub>}, volume={59}, issn={0195-6698}, journal={European Journal of Combinatorics}, pages={169--186}, author={Michalek, Mateusz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52581"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Finite phylogenetic complexity of Z<sub>p</sub> and invariants for Z<sub>3</sub></dcterms:title> <dcterms:issued>2017</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-28T09:01:36Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-28T09:01:36Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Michalek, Mateusz</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Michalek, Mateusz</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52581"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We study phylogenetic complexity of finite abelian groups - an invariant introduced by Sturmfels and Sullivant. The invariant is hard to compute - so far it was only known for Z<sub>2</sub>, in which case it equals 2. We prove that phylogenetic complexity of any group Z<sub>p</sub>, where p is prime, is finite. We also show, as conjectured by Sturmfels and Sullivant, that the phylogenetic complexity of Z<sub>3</sub> equals 3.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt