Finite phylogenetic complexity of Zp and invariants for Z3
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
European Journal of Combinatorics. Elsevier. 2017, 59, pp. 169-186. ISSN 0195-6698. eISSN 1095-9971. Available under: doi: 10.1016/j.ejc.2016.08.007
Zusammenfassung
We study phylogenetic complexity of finite abelian groups - an invariant introduced by Sturmfels and Sullivant. The invariant is hard to compute - so far it was only known for Z2, in which case it equals 2. We prove that phylogenetic complexity of any group Zp, where p is prime, is finite. We also show, as conjectured by Sturmfels and Sullivant, that the phylogenetic complexity of Z3 equals 3.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
MICHALEK, Mateusz, 2017. Finite phylogenetic complexity of Zp and invariants for Z3. In: European Journal of Combinatorics. Elsevier. 2017, 59, pp. 169-186. ISSN 0195-6698. eISSN 1095-9971. Available under: doi: 10.1016/j.ejc.2016.08.007BibTex
@article{Michalek2017Finit-52581, year={2017}, doi={10.1016/j.ejc.2016.08.007}, title={Finite phylogenetic complexity of Z<sub>p</sub> and invariants for Z<sub>3</sub>}, volume={59}, issn={0195-6698}, journal={European Journal of Combinatorics}, pages={169--186}, author={Michalek, Mateusz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52581"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Finite phylogenetic complexity of Z<sub>p</sub> and invariants for Z<sub>3</sub></dcterms:title> <dcterms:issued>2017</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-28T09:01:36Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-28T09:01:36Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Michalek, Mateusz</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Michalek, Mateusz</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52581"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We study phylogenetic complexity of finite abelian groups - an invariant introduced by Sturmfels and Sullivant. The invariant is hard to compute - so far it was only known for Z<sub>2</sub>, in which case it equals 2. We prove that phylogenetic complexity of any group Z<sub>p</sub>, where p is prime, is finite. We also show, as conjectured by Sturmfels and Sullivant, that the phylogenetic complexity of Z<sub>3</sub> equals 3.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt