Translation invariant realizability problem on the d-dimensional lattice : an explicit construction
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Electronic Communications in Probability. 2016, 21, 45. eISSN 1083-589X. Available under: doi: 10.1214/16-ECP4620
Zusammenfassung
We consider a particular instance of the truncated realizability problem on the d-dimensional lattice. Namely, given two functions ρ1(i) and ρ2(i,j) non-negative and symmetric on Zd, we ask whether they are the first two correlation functions of a translation invariant point process. We provide an explicit construction of such a realizing process for any d ≥ 2 when the radial distribution has a specific form. We also derive from this construction a lower bound for the maximal realizable density and compare it with the already known lower bounds.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
CAGLIOTI, Emanuele, Maria INFUSINO, Tobias KUNA, 2016. Translation invariant realizability problem on the d-dimensional lattice : an explicit construction. In: Electronic Communications in Probability. 2016, 21, 45. eISSN 1083-589X. Available under: doi: 10.1214/16-ECP4620BibTex
@article{Caglioti2016Trans-33285, year={2016}, doi={10.1214/16-ECP4620}, title={Translation invariant realizability problem on the d-dimensional lattice : an explicit construction}, volume={21}, journal={Electronic Communications in Probability}, author={Caglioti, Emanuele and Infusino, Maria and Kuna, Tobias}, note={Article Number: 45} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33285"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-17T12:57:12Z</dc:date> <dc:creator>Kuna, Tobias</dc:creator> <dcterms:issued>2016</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-17T12:57:12Z</dcterms:available> <dc:contributor>Caglioti, Emanuele</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:title>Translation invariant realizability problem on the d-dimensional lattice : an explicit construction</dcterms:title> <dc:creator>Caglioti, Emanuele</dc:creator> <dc:contributor>Infusino, Maria</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:abstract xml:lang="eng">We consider a particular instance of the truncated realizability problem on the d-dimensional lattice. Namely, given two functions ρ<sub>1</sub>(i) and ρ<sub>2</sub>(i,j) non-negative and symmetric on Z<sup>d</sup>, we ask whether they are the first two correlation functions of a translation invariant point process. We provide an explicit construction of such a realizing process for any d ≥ 2 when the radial distribution has a specific form. We also derive from this construction a lower bound for the maximal realizable density and compare it with the already known lower bounds.</dcterms:abstract> <dc:contributor>Kuna, Tobias</dc:contributor> <dc:creator>Infusino, Maria</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33285"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja