Time Series Model Attribution Visualizations as Explanations
Lade...
Dateien
Datum
2021
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX). Piscataway, NJ: IEEE, 2021, pp. 27-31. ISBN 978-1-6654-1817-1. Available under: doi: 10.1109/TREX53765.2021.00010
Zusammenfassung
Attributions are a common local explanation technique for deep learning models on single samples as they are easily extractable and demonstrate the relevance of input values. In many cases, heatmaps visualize such attributions for samples, for instance, on images. However, heatmaps are not always the ideal visualization to explain certain model decisions for other data types. In this review, we focus on attribution visualizations for time series. We collect attribution heatmap visualizations and some alternatives, discuss the advantages as well as disadvantages and give a short position towards future opportunities for attributions and explanations for time series.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX), 24. Okt. 2021 - 25. Okt. 2021, New Orleans, LA
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SCHLEGEL, Udo, Daniel A. KEIM, 2021. Time Series Model Attribution Visualizations as Explanations. 2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX). New Orleans, LA, 24. Okt. 2021 - 25. Okt. 2021. In: 2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX). Piscataway, NJ: IEEE, 2021, pp. 27-31. ISBN 978-1-6654-1817-1. Available under: doi: 10.1109/TREX53765.2021.00010BibTex
@inproceedings{Schlegel2021-09-27T10:44:07ZSerie-55189, year={2021}, doi={10.1109/TREX53765.2021.00010}, title={Time Series Model Attribution Visualizations as Explanations}, isbn={978-1-6654-1817-1}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX)}, pages={27--31}, author={Schlegel, Udo and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55189"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">Attributions are a common local explanation technique for deep learning models on single samples as they are easily extractable and demonstrate the relevance of input values. In many cases, heatmaps visualize such attributions for samples, for instance, on images. However, heatmaps are not always the ideal visualization to explain certain model decisions for other data types. In this review, we focus on attribution visualizations for time series. We collect attribution heatmap visualizations and some alternatives, discuss the advantages as well as disadvantages and give a short position towards future opportunities for attributions and explanations for time series.</dcterms:abstract> <dc:contributor>Schlegel, Udo</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55189/1/Schlegel_2-eel2423v2fnx8.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55189"/> <dcterms:title>Time Series Model Attribution Visualizations as Explanations</dcterms:title> <dc:language>eng</dc:language> <dcterms:issued>2021-09-27T10:44:07Z</dcterms:issued> <dc:contributor>Keim, Daniel A.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-08T08:45:54Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-08T08:45:54Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55189/1/Schlegel_2-eel2423v2fnx8.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Schlegel, Udo</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja