Publikation:

Time Series Model Attribution Visualizations as Explanations

Lade...
Vorschaubild

Dateien

Schlegel_2-eel2423v2fnx8.pdf
Schlegel_2-eel2423v2fnx8.pdfGröße: 233.89 KBDownloads: 44

Datum

2021

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX). Piscataway, NJ: IEEE, 2021, pp. 27-31. ISBN 978-1-6654-1817-1. Available under: doi: 10.1109/TREX53765.2021.00010

Zusammenfassung

Attributions are a common local explanation technique for deep learning models on single samples as they are easily extractable and demonstrate the relevance of input values. In many cases, heatmaps visualize such attributions for samples, for instance, on images. However, heatmaps are not always the ideal visualization to explain certain model decisions for other data types. In this review, we focus on attribution visualizations for time series. We collect attribution heatmap visualizations and some alternatives, discuss the advantages as well as disadvantages and give a short position towards future opportunities for attributions and explanations for time series.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX), 24. Okt. 2021 - 25. Okt. 2021, New Orleans, LA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHLEGEL, Udo, Daniel A. KEIM, 2021. Time Series Model Attribution Visualizations as Explanations. 2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX). New Orleans, LA, 24. Okt. 2021 - 25. Okt. 2021. In: 2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX). Piscataway, NJ: IEEE, 2021, pp. 27-31. ISBN 978-1-6654-1817-1. Available under: doi: 10.1109/TREX53765.2021.00010
BibTex
@inproceedings{Schlegel2021-09-27T10:44:07ZSerie-55189,
  year={2021},
  doi={10.1109/TREX53765.2021.00010},
  title={Time Series Model Attribution Visualizations as Explanations},
  isbn={978-1-6654-1817-1},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX)},
  pages={27--31},
  author={Schlegel, Udo and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55189">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Attributions are a common local explanation technique for deep learning models on single samples as they are easily extractable and demonstrate the relevance of input values. In many cases, heatmaps visualize such attributions for samples, for instance, on images. However, heatmaps are not always the ideal visualization to explain certain model decisions for other data types. In this review, we focus on attribution visualizations for time series. We collect attribution heatmap visualizations and some alternatives, discuss the advantages as well as disadvantages and give a short position towards future opportunities for attributions and explanations for time series.</dcterms:abstract>
    <dc:contributor>Schlegel, Udo</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55189/1/Schlegel_2-eel2423v2fnx8.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55189"/>
    <dcterms:title>Time Series Model Attribution Visualizations as Explanations</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:issued>2021-09-27T10:44:07Z</dcterms:issued>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-08T08:45:54Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-08T08:45:54Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55189/1/Schlegel_2-eel2423v2fnx8.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Schlegel, Udo</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen