Estimating 2D Multi-hand Poses from Single Depth Images
Estimating 2D Multi-hand Poses from Single Depth Images
Loading...
Date
2019
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Computer Vision - ECCV 2018 Workshops : Munich, Germany, September 8-14, 2018, Proceedings, Part VI / Leal-Taixé, Laura; Roth, Stefan (ed.). - Cham : Springer, 2019. - (Lecture Notes in Computer Science ; 11134). - pp. 257-272. - ISSN 0302-9743. - eISSN 1611-3349. - ISBN 978-3-030-11023-9
Abstract
We present a novel framework based on Pictorial Structure (PS) models to estimate 2D multi-hand poses from depth images. Most existing single-hand pose estimation algorithms are either subject to strong assumptions or depend on a weak detector to detect the human hand. We utilize Mask R-CNN to avoid both aforementioned constraints. The proposed framework allows detection of multi-hand instances and localization of hand joints simultaneously. Our experiments show that our method is superior to existing methods.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
European Conference on Computer Vision (ECCV) 2018, Sep 8, 2018 - Sep 14, 2018, München
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
DUAN, Le, Minmin SHEN, Song CUI, Zhexiao GUO, Oliver DEUSSEN, 2019. Estimating 2D Multi-hand Poses from Single Depth Images. European Conference on Computer Vision (ECCV) 2018. München, Sep 8, 2018 - Sep 14, 2018. In: LEAL-TAIXÉ, Laura, ed., Stefan ROTH, ed.. Computer Vision - ECCV 2018 Workshops : Munich, Germany, September 8-14, 2018, Proceedings, Part VI. Cham:Springer, pp. 257-272. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-11023-9. Available under: doi: 10.1007/978-3-030-11024-6_17BibTex
@inproceedings{Duan2019Estim-52400, year={2019}, doi={10.1007/978-3-030-11024-6_17}, title={Estimating 2D Multi-hand Poses from Single Depth Images}, number={11134}, isbn={978-3-030-11023-9}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Computer Vision - ECCV 2018 Workshops : Munich, Germany, September 8-14, 2018, Proceedings, Part VI}, pages={257--272}, editor={Leal-Taixé, Laura and Roth, Stefan}, author={Duan, Le and Shen, Minmin and Cui, Song and Guo, Zhexiao and Deussen, Oliver} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52400"> <dc:rights>terms-of-use</dc:rights> <dc:creator>Cui, Song</dc:creator> <dc:creator>Shen, Minmin</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52400/1/Duan_2-eag9rf9qwzit2.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-14T09:07:38Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52400/1/Duan_2-eag9rf9qwzit2.pdf"/> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:creator>Duan, Le</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-14T09:07:38Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Estimating 2D Multi-hand Poses from Single Depth Images</dcterms:title> <dc:creator>Guo, Zhexiao</dc:creator> <dcterms:abstract xml:lang="eng">We present a novel framework based on Pictorial Structure (PS) models to estimate 2D multi-hand poses from depth images. Most existing single-hand pose estimation algorithms are either subject to strong assumptions or depend on a weak detector to detect the human hand. We utilize Mask R-CNN to avoid both aforementioned constraints. The proposed framework allows detection of multi-hand instances and localization of hand joints simultaneously. Our experiments show that our method is superior to existing methods.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:contributor>Shen, Minmin</dc:contributor> <dc:contributor>Cui, Song</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Guo, Zhexiao</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Deussen, Oliver</dc:creator> <dcterms:issued>2019</dcterms:issued> <dc:contributor>Duan, Le</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52400"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes