Visual Analytics Framework for the Assessment of Temporal Hypergraph Prediction Models

Lade...
Vorschaubild
Dateien
Streeb_2-e6kfi4g07dsr7.pdf
Streeb_2-e6kfi4g07dsr7.pdfGröße: 351.97 KBDownloads: 123
Datum
2019
Autor:innen
Arya, Devanshu
Worring, Marcel
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
European Union (EU): 700381
Projekt
ASGARD - Analysis System For Gathered Raw Data
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Proceeedings of the Set Visual Analytics Workshop at IEEE VIS 2019. 2019
Zusammenfassung

Members of communities often share topics of interest. However, usually not all members are interested in all topics, and participation in topics changes over time. Prediction models based on temporal hypergraphs that—in contrast to state-of-the-art models—exploit group structures in the communication network can be used to anticipate changes of interests. In practice, there is a need to assess these models in detail. While loss functions used in the training process can provide initial cues on the model’s global quality, local quality can be investigated with visual analytics. In this paper, we present a visual analytics framework for the assessment of temporal hypergraph prediction models. We introduce its core components: a sliding window approach to prediction and an interactive visualization for partially fuzzy temporal hypergraphs.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Set Visual Analytics Workshop at IEEE VIS 2019, 20. Okt. 2019, Vancouver, Canada
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690STREEB, Dirk, Devanshu ARYA, Daniel A. KEIM, Marcel WORRING, 2019. Visual Analytics Framework for the Assessment of Temporal Hypergraph Prediction Models. Set Visual Analytics Workshop at IEEE VIS 2019. Vancouver, Canada, 20. Okt. 2019. In: Proceeedings of the Set Visual Analytics Workshop at IEEE VIS 2019. 2019
BibTex
@inproceedings{Streeb2019Visua-47306,
  year={2019},
  title={Visual Analytics Framework for the Assessment of Temporal Hypergraph Prediction Models},
  url={https://scibib.dbvis.de/publications/view/838},
  booktitle={Proceeedings of the Set Visual Analytics Workshop at IEEE VIS 2019},
  author={Streeb, Dirk and Arya, Devanshu and Keim, Daniel A. and Worring, Marcel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47306">
    <dc:creator>Streeb, Dirk</dc:creator>
    <dc:contributor>Streeb, Dirk</dc:contributor>
    <dc:contributor>Arya, Devanshu</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47306/1/Streeb_2-e6kfi4g07dsr7.pdf"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Worring, Marcel</dc:creator>
    <dcterms:abstract xml:lang="eng">Members of communities often share topics of interest. However, usually not all members are interested in all topics, and participation in topics changes over time. Prediction models based on temporal hypergraphs that—in contrast to state-of-the-art models—exploit group structures in the communication network can be used to anticipate changes of interests. In practice, there is a need to assess these models in detail. While loss functions used in the training process can provide initial cues on the model’s global quality, local quality can be investigated with visual analytics. In this paper, we present a visual analytics framework for the assessment of temporal hypergraph prediction models. We introduce its core components: a sliding window approach to prediction and an interactive visualization for partially fuzzy temporal hypergraphs.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47306"/>
    <dc:creator>Arya, Devanshu</dc:creator>
    <dcterms:title>Visual Analytics Framework for the Assessment of Temporal Hypergraph Prediction Models</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47306/1/Streeb_2-e6kfi4g07dsr7.pdf"/>
    <dcterms:issued>2019</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-24T12:50:31Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-24T12:50:31Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Worring, Marcel</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
Prüfdatum der URL
2019-10-24
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 1 von 1
VersionDatumZusammenfassung
1*
2019-10-24 12:50:31
* Ausgewählte Version