Publikation:

Visual Analytics Framework for the Assessment of Temporal Hypergraph Prediction Models

Lade...
Vorschaubild

Dateien

Streeb_2-e6kfi4g07dsr7.pdf
Streeb_2-e6kfi4g07dsr7.pdfGröße: 351.97 KBDownloads: 134

Datum

2019

Autor:innen

Arya, Devanshu
Worring, Marcel

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 700381

Projekt

ASGARD - Analysis System For Gathered Raw Data
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceeedings of the Set Visual Analytics Workshop at IEEE VIS 2019. 2019

Zusammenfassung

Members of communities often share topics of interest. However, usually not all members are interested in all topics, and participation in topics changes over time. Prediction models based on temporal hypergraphs that—in contrast to state-of-the-art models—exploit group structures in the communication network can be used to anticipate changes of interests. In practice, there is a need to assess these models in detail. While loss functions used in the training process can provide initial cues on the model’s global quality, local quality can be investigated with visual analytics. In this paper, we present a visual analytics framework for the assessment of temporal hypergraph prediction models. We introduce its core components: a sliding window approach to prediction and an interactive visualization for partially fuzzy temporal hypergraphs.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Set Visual Analytics Workshop at IEEE VIS 2019, 20. Okt. 2019, Vancouver, Canada
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690STREEB, Dirk, Devanshu ARYA, Daniel A. KEIM, Marcel WORRING, 2019. Visual Analytics Framework for the Assessment of Temporal Hypergraph Prediction Models. Set Visual Analytics Workshop at IEEE VIS 2019. Vancouver, Canada, 20. Okt. 2019. In: Proceeedings of the Set Visual Analytics Workshop at IEEE VIS 2019. 2019
BibTex
@inproceedings{Streeb2019Visua-47306,
  year={2019},
  title={Visual Analytics Framework for the Assessment of Temporal Hypergraph Prediction Models},
  url={https://scibib.dbvis.de/publications/view/838},
  booktitle={Proceeedings of the Set Visual Analytics Workshop at IEEE VIS 2019},
  author={Streeb, Dirk and Arya, Devanshu and Keim, Daniel A. and Worring, Marcel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47306">
    <dc:creator>Streeb, Dirk</dc:creator>
    <dc:contributor>Streeb, Dirk</dc:contributor>
    <dc:contributor>Arya, Devanshu</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47306/1/Streeb_2-e6kfi4g07dsr7.pdf"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Worring, Marcel</dc:creator>
    <dcterms:abstract xml:lang="eng">Members of communities often share topics of interest. However, usually not all members are interested in all topics, and participation in topics changes over time. Prediction models based on temporal hypergraphs that—in contrast to state-of-the-art models—exploit group structures in the communication network can be used to anticipate changes of interests. In practice, there is a need to assess these models in detail. While loss functions used in the training process can provide initial cues on the model’s global quality, local quality can be investigated with visual analytics. In this paper, we present a visual analytics framework for the assessment of temporal hypergraph prediction models. We introduce its core components: a sliding window approach to prediction and an interactive visualization for partially fuzzy temporal hypergraphs.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47306"/>
    <dc:creator>Arya, Devanshu</dc:creator>
    <dcterms:title>Visual Analytics Framework for the Assessment of Temporal Hypergraph Prediction Models</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47306/1/Streeb_2-e6kfi4g07dsr7.pdf"/>
    <dcterms:issued>2019</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-24T12:50:31Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-24T12:50:31Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Worring, Marcel</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2019-10-24

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 1 von 1
VersionDatumZusammenfassung
1*
2019-10-24 12:50:31
* Ausgewählte Version