Visual Analytics Framework for the Assessment of Temporal Hypergraph Prediction Models
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Members of communities often share topics of interest. However, usually not all members are interested in all topics, and participation in topics changes over time. Prediction models based on temporal hypergraphs that—in contrast to state-of-the-art models—exploit group structures in the communication network can be used to anticipate changes of interests. In practice, there is a need to assess these models in detail. While loss functions used in the training process can provide initial cues on the model’s global quality, local quality can be investigated with visual analytics. In this paper, we present a visual analytics framework for the assessment of temporal hypergraph prediction models. We introduce its core components: a sliding window approach to prediction and an interactive visualization for partially fuzzy temporal hypergraphs.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STREEB, Dirk, Devanshu ARYA, Daniel A. KEIM, Marcel WORRING, 2019. Visual Analytics Framework for the Assessment of Temporal Hypergraph Prediction Models. Set Visual Analytics Workshop at IEEE VIS 2019. Vancouver, Canada, 20. Okt. 2019. In: Proceeedings of the Set Visual Analytics Workshop at IEEE VIS 2019. 2019BibTex
@inproceedings{Streeb2019Visua-47306, year={2019}, title={Visual Analytics Framework for the Assessment of Temporal Hypergraph Prediction Models}, url={https://scibib.dbvis.de/publications/view/838}, booktitle={Proceeedings of the Set Visual Analytics Workshop at IEEE VIS 2019}, author={Streeb, Dirk and Arya, Devanshu and Keim, Daniel A. and Worring, Marcel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47306"> <dc:creator>Streeb, Dirk</dc:creator> <dc:contributor>Streeb, Dirk</dc:contributor> <dc:contributor>Arya, Devanshu</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47306/1/Streeb_2-e6kfi4g07dsr7.pdf"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Worring, Marcel</dc:creator> <dcterms:abstract xml:lang="eng">Members of communities often share topics of interest. However, usually not all members are interested in all topics, and participation in topics changes over time. Prediction models based on temporal hypergraphs that—in contrast to state-of-the-art models—exploit group structures in the communication network can be used to anticipate changes of interests. In practice, there is a need to assess these models in detail. While loss functions used in the training process can provide initial cues on the model’s global quality, local quality can be investigated with visual analytics. In this paper, we present a visual analytics framework for the assessment of temporal hypergraph prediction models. We introduce its core components: a sliding window approach to prediction and an interactive visualization for partially fuzzy temporal hypergraphs.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47306"/> <dc:creator>Arya, Devanshu</dc:creator> <dcterms:title>Visual Analytics Framework for the Assessment of Temporal Hypergraph Prediction Models</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47306/1/Streeb_2-e6kfi4g07dsr7.pdf"/> <dcterms:issued>2019</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-24T12:50:31Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-24T12:50:31Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Worring, Marcel</dc:contributor> </rdf:Description> </rdf:RDF>