Minimize surprise MAP-elites : a task-independent MAP-elites variant for swarms

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2022
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
FIELDSEND, Jonathan E., ed.. GECCO '22 : Proceedings of the Genetic and Evolutionary Computation Conference Companion. New York, NY: ACM, 2022, pp. 116-119. ISBN 978-1-4503-9268-6. Available under: doi: 10.1145/3520304.3528773
Zusammenfassung

Swarm robotics controllers are often automatically generated using methods of evolutionary computation with a task-specific fitness function to guide the optimization process. By contrast, our minimize surprise approach uses a task-independent fitness function to generate diverse behaviors over several independent evolutionary runs. Alternatives are divergent search algorithms rewarding behavioral novelty, such as novelty search, and quality-diversity algorithms generating diverse high-quality solutions, such as MAP-Elites. These approaches usually rely on task-dependent measures. We propose Minimize Surprise MAP-Elites, a task-independent MAP-Elites variant that combines MAP-Elites with our minimize surprise approach. Our first experiments result in high-quality solutions that lead to behavioral diversity across tasks and within tasks.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
GECCO '22 : Genetic and Evolutionary Computation Conference, 9. Juli 2022 - 13. Juli 2022, Boston, MA, USA
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690KAISER, Tanja Katharina, Heiko HAMANN, 2022. Minimize surprise MAP-elites : a task-independent MAP-elites variant for swarms. GECCO '22 : Genetic and Evolutionary Computation Conference. Boston, MA, USA, 9. Juli 2022 - 13. Juli 2022. In: FIELDSEND, Jonathan E., ed.. GECCO '22 : Proceedings of the Genetic and Evolutionary Computation Conference Companion. New York, NY: ACM, 2022, pp. 116-119. ISBN 978-1-4503-9268-6. Available under: doi: 10.1145/3520304.3528773
BibTex
@inproceedings{Kaiser2022Minim-59705,
  year={2022},
  doi={10.1145/3520304.3528773},
  title={Minimize surprise MAP-elites : a task-independent MAP-elites variant for swarms},
  isbn={978-1-4503-9268-6},
  publisher={ACM},
  address={New York, NY},
  booktitle={GECCO '22 : Proceedings of the Genetic and Evolutionary Computation Conference Companion},
  pages={116--119},
  editor={Fieldsend, Jonathan E.},
  author={Kaiser, Tanja Katharina and Hamann, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59705">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Minimize surprise MAP-elites : a task-independent MAP-elites variant for swarms</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59705"/>
    <dcterms:abstract xml:lang="eng">Swarm robotics controllers are often automatically generated using methods of evolutionary computation with a task-specific fitness function to guide the optimization process. By contrast, our minimize surprise approach uses a task-independent fitness function to generate diverse behaviors over several independent evolutionary runs. Alternatives are divergent search algorithms rewarding behavioral novelty, such as novelty search, and quality-diversity algorithms generating diverse high-quality solutions, such as MAP-Elites. These approaches usually rely on task-dependent measures. We propose Minimize Surprise MAP-Elites, a task-independent MAP-Elites variant that combines MAP-Elites with our minimize surprise approach. Our first experiments result in high-quality solutions that lead to behavioral diversity across tasks and within tasks.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-13T08:35:31Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-13T08:35:31Z</dc:date>
    <dc:creator>Kaiser, Tanja Katharina</dc:creator>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dc:contributor>Kaiser, Tanja Katharina</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet