Minimize surprise MAP-elites : a task-independent MAP-elites variant for swarms
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Swarm robotics controllers are often automatically generated using methods of evolutionary computation with a task-specific fitness function to guide the optimization process. By contrast, our minimize surprise approach uses a task-independent fitness function to generate diverse behaviors over several independent evolutionary runs. Alternatives are divergent search algorithms rewarding behavioral novelty, such as novelty search, and quality-diversity algorithms generating diverse high-quality solutions, such as MAP-Elites. These approaches usually rely on task-dependent measures. We propose Minimize Surprise MAP-Elites, a task-independent MAP-Elites variant that combines MAP-Elites with our minimize surprise approach. Our first experiments result in high-quality solutions that lead to behavioral diversity across tasks and within tasks.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KAISER, Tanja Katharina, Heiko HAMANN, 2022. Minimize surprise MAP-elites : a task-independent MAP-elites variant for swarms. GECCO '22 : Genetic and Evolutionary Computation Conference. Boston, MA, USA, 9. Juli 2022 - 13. Juli 2022. In: FIELDSEND, Jonathan E., ed.. GECCO '22 : Proceedings of the Genetic and Evolutionary Computation Conference Companion. New York, NY: ACM, 2022, pp. 116-119. ISBN 978-1-4503-9268-6. Available under: doi: 10.1145/3520304.3528773BibTex
@inproceedings{Kaiser2022Minim-59705, year={2022}, doi={10.1145/3520304.3528773}, title={Minimize surprise MAP-elites : a task-independent MAP-elites variant for swarms}, isbn={978-1-4503-9268-6}, publisher={ACM}, address={New York, NY}, booktitle={GECCO '22 : Proceedings of the Genetic and Evolutionary Computation Conference Companion}, pages={116--119}, editor={Fieldsend, Jonathan E.}, author={Kaiser, Tanja Katharina and Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59705"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Minimize surprise MAP-elites : a task-independent MAP-elites variant for swarms</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59705"/> <dcterms:abstract xml:lang="eng">Swarm robotics controllers are often automatically generated using methods of evolutionary computation with a task-specific fitness function to guide the optimization process. By contrast, our minimize surprise approach uses a task-independent fitness function to generate diverse behaviors over several independent evolutionary runs. Alternatives are divergent search algorithms rewarding behavioral novelty, such as novelty search, and quality-diversity algorithms generating diverse high-quality solutions, such as MAP-Elites. These approaches usually rely on task-dependent measures. We propose Minimize Surprise MAP-Elites, a task-independent MAP-Elites variant that combines MAP-Elites with our minimize surprise approach. Our first experiments result in high-quality solutions that lead to behavioral diversity across tasks and within tasks.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-13T08:35:31Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-13T08:35:31Z</dc:date> <dc:creator>Kaiser, Tanja Katharina</dc:creator> <dcterms:issued>2022</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hamann, Heiko</dc:contributor> <dc:creator>Hamann, Heiko</dc:creator> <dc:contributor>Kaiser, Tanja Katharina</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59705/1/Kaiser_2-e5bhj0wixaci7.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59705/1/Kaiser_2-e5bhj0wixaci7.pdf"/> </rdf:Description> </rdf:RDF>