Publikation:

Ramsey growth in some NIP structures

Lade...
Vorschaubild

Dateien

Chernikov_2-dmntgwgo9r550.pdf
Chernikov_2-dmntgwgo9r550.pdfGröße: 599.6 KBDownloads: 90

Datum

2021

Autor:innen

Chernikov, Artem
Starchenko, Sergei

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of the Institute of Mathematics of Jussieu. Cambridge University Press. 2021, 20(1), pp. 1-29. ISSN 1474-7480. eISSN 1475-3030. Available under: doi: 10.1017/S1474748019000100

Zusammenfassung

We investigate bounds in Ramsey’s theorem for relations definable in NIP structures. Applying model-theoretic methods to finitary combinatorics, we generalize a theorem of Bukh and Matousek (Duke Mathematical Journal 163(12) (2014), 2243–2270) from the semialgebraic case to arbitrary polynomially bounded o -minimal expansions of R , and show that it does not hold in Rexp . This provides a new combinatorial characterization of polynomial boundedness for o -minimal structures. We also prove an analog for relations definable in P -minimal structures, in particular for the field of the p -adics. Generalizing Conlon et al. (Transactions of the American Mathematical Society 366(9) (2014), 5043–5065), we show that in distal structures the upper bound for k -ary definable relations is given by the exponential tower of height k−1 .

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

o-minimality; NIP; Ramsey's theorem; p-minimality; polynomially bounded

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690CHERNIKOV, Artem, Sergei STARCHENKO, Margaret E. M. THOMAS, 2021. Ramsey growth in some NIP structures. In: Journal of the Institute of Mathematics of Jussieu. Cambridge University Press. 2021, 20(1), pp. 1-29. ISSN 1474-7480. eISSN 1475-3030. Available under: doi: 10.1017/S1474748019000100
BibTex
@article{Chernikov2021Ramse-53535,
  year={2021},
  doi={10.1017/S1474748019000100},
  title={Ramsey growth in some NIP structures},
  number={1},
  volume={20},
  issn={1474-7480},
  journal={Journal of the Institute of Mathematics of Jussieu},
  pages={1--29},
  author={Chernikov, Artem and Starchenko, Sergei and Thomas, Margaret E. M.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53535">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Chernikov, Artem</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Chernikov, Artem</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53535/1/Chernikov_2-dmntgwgo9r550.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53535/1/Chernikov_2-dmntgwgo9r550.pdf"/>
    <dc:contributor>Thomas, Margaret E. M.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-29T11:47:34Z</dcterms:available>
    <dc:creator>Thomas, Margaret E. M.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-29T11:47:34Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2021</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53535"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">We investigate bounds in Ramsey’s theorem for relations definable in NIP structures. Applying model-theoretic methods to finitary combinatorics, we generalize a theorem of Bukh and Matousek (Duke Mathematical Journal 163(12) (2014), 2243–2270) from the semialgebraic case to arbitrary polynomially bounded o -minimal expansions of R , and show that it does not hold in R&lt;sub&gt;exp&lt;/sub&gt; . This provides a new combinatorial characterization of polynomial boundedness for o -minimal structures. We also prove an analog for relations definable in P -minimal structures, in particular for the field of the p -adics. Generalizing Conlon et al. (Transactions of the American Mathematical Society 366(9) (2014), 5043–5065), we show that in distal structures the upper bound for k -ary definable relations is given by the exponential tower of height k−1 .</dcterms:abstract>
    <dc:contributor>Starchenko, Sergei</dc:contributor>
    <dc:creator>Starchenko, Sergei</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Ramsey growth in some NIP structures</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen