Publikation: Ramsey growth in some NIP structures
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We investigate bounds in Ramsey’s theorem for relations definable in NIP structures. Applying model-theoretic methods to finitary combinatorics, we generalize a theorem of Bukh and Matousek (Duke Mathematical Journal 163(12) (2014), 2243–2270) from the semialgebraic case to arbitrary polynomially bounded o -minimal expansions of R , and show that it does not hold in Rexp . This provides a new combinatorial characterization of polynomial boundedness for o -minimal structures. We also prove an analog for relations definable in P -minimal structures, in particular for the field of the p -adics. Generalizing Conlon et al. (Transactions of the American Mathematical Society 366(9) (2014), 5043–5065), we show that in distal structures the upper bound for k -ary definable relations is given by the exponential tower of height k−1 .
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CHERNIKOV, Artem, Sergei STARCHENKO, Margaret E. M. THOMAS, 2021. Ramsey growth in some NIP structures. In: Journal of the Institute of Mathematics of Jussieu. Cambridge University Press. 2021, 20(1), pp. 1-29. ISSN 1474-7480. eISSN 1475-3030. Available under: doi: 10.1017/S1474748019000100BibTex
@article{Chernikov2021Ramse-53535, year={2021}, doi={10.1017/S1474748019000100}, title={Ramsey growth in some NIP structures}, number={1}, volume={20}, issn={1474-7480}, journal={Journal of the Institute of Mathematics of Jussieu}, pages={1--29}, author={Chernikov, Artem and Starchenko, Sergei and Thomas, Margaret E. M.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53535"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:creator>Chernikov, Artem</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Chernikov, Artem</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53535/1/Chernikov_2-dmntgwgo9r550.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53535/1/Chernikov_2-dmntgwgo9r550.pdf"/> <dc:contributor>Thomas, Margaret E. M.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-29T11:47:34Z</dcterms:available> <dc:creator>Thomas, Margaret E. M.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-29T11:47:34Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2021</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53535"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We investigate bounds in Ramsey’s theorem for relations definable in NIP structures. Applying model-theoretic methods to finitary combinatorics, we generalize a theorem of Bukh and Matousek (Duke Mathematical Journal 163(12) (2014), 2243–2270) from the semialgebraic case to arbitrary polynomially bounded o -minimal expansions of R , and show that it does not hold in R<sub>exp</sub> . This provides a new combinatorial characterization of polynomial boundedness for o -minimal structures. We also prove an analog for relations definable in P -minimal structures, in particular for the field of the p -adics. Generalizing Conlon et al. (Transactions of the American Mathematical Society 366(9) (2014), 5043–5065), we show that in distal structures the upper bound for k -ary definable relations is given by the exponential tower of height k−1 .</dcterms:abstract> <dc:contributor>Starchenko, Sergei</dc:contributor> <dc:creator>Starchenko, Sergei</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Ramsey growth in some NIP structures</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>