Ramsey growth in some NIP structures
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We investigate bounds in Ramsey’s theorem for relations definable in NIP structures. Applying model-theoretic methods to finitary combinatorics, we generalize a theorem of Bukh and Matousek (Duke Mathematical Journal 163(12) (2014), 2243–2270) from the semialgebraic case to arbitrary polynomially bounded o -minimal expansions of R , and show that it does not hold in Rexp . This provides a new combinatorial characterization of polynomial boundedness for o -minimal structures. We also prove an analog for relations definable in P -minimal structures, in particular for the field of the p -adics. Generalizing Conlon et al. (Transactions of the American Mathematical Society 366(9) (2014), 5043–5065), we show that in distal structures the upper bound for k -ary definable relations is given by the exponential tower of height k−1 .
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CHERNIKOV, Artem, Sergei STARCHENKO, Margaret E. M. THOMAS, 2021. Ramsey growth in some NIP structures. In: Journal of the Institute of Mathematics of Jussieu. Cambridge University Press. 2021, 20(1), pp. 1-29. ISSN 1474-7480. eISSN 1475-3030. Available under: doi: 10.1017/S1474748019000100BibTex
@article{Chernikov2021Ramse-53535, year={2021}, doi={10.1017/S1474748019000100}, title={Ramsey growth in some NIP structures}, number={1}, volume={20}, issn={1474-7480}, journal={Journal of the Institute of Mathematics of Jussieu}, pages={1--29}, author={Chernikov, Artem and Starchenko, Sergei and Thomas, Margaret E. M.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53535"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:creator>Chernikov, Artem</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Chernikov, Artem</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53535/1/Chernikov_2-dmntgwgo9r550.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53535/1/Chernikov_2-dmntgwgo9r550.pdf"/> <dc:contributor>Thomas, Margaret E. M.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-29T11:47:34Z</dcterms:available> <dc:creator>Thomas, Margaret E. M.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-29T11:47:34Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2021</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53535"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We investigate bounds in Ramsey’s theorem for relations definable in NIP structures. Applying model-theoretic methods to finitary combinatorics, we generalize a theorem of Bukh and Matousek (Duke Mathematical Journal 163(12) (2014), 2243–2270) from the semialgebraic case to arbitrary polynomially bounded o -minimal expansions of R , and show that it does not hold in R<sub>exp</sub> . This provides a new combinatorial characterization of polynomial boundedness for o -minimal structures. We also prove an analog for relations definable in P -minimal structures, in particular for the field of the p -adics. Generalizing Conlon et al. (Transactions of the American Mathematical Society 366(9) (2014), 5043–5065), we show that in distal structures the upper bound for k -ary definable relations is given by the exponential tower of height k−1 .</dcterms:abstract> <dc:contributor>Starchenko, Sergei</dc:contributor> <dc:creator>Starchenko, Sergei</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Ramsey growth in some NIP structures</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>