Ramsey growth in some NIP structures

Lade...
Vorschaubild
Dateien
Chernikov_2-dmntgwgo9r550.pdf
Chernikov_2-dmntgwgo9r550.pdfGröße: 599.6 KBDownloads: 90
Datum
2021
Autor:innen
Chernikov, Artem
Starchenko, Sergei
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of the Institute of Mathematics of Jussieu. Cambridge University Press. 2021, 20(1), pp. 1-29. ISSN 1474-7480. eISSN 1475-3030. Available under: doi: 10.1017/S1474748019000100
Zusammenfassung

We investigate bounds in Ramsey’s theorem for relations definable in NIP structures. Applying model-theoretic methods to finitary combinatorics, we generalize a theorem of Bukh and Matousek (Duke Mathematical Journal 163(12) (2014), 2243–2270) from the semialgebraic case to arbitrary polynomially bounded o -minimal expansions of R , and show that it does not hold in Rexp . This provides a new combinatorial characterization of polynomial boundedness for o -minimal structures. We also prove an analog for relations definable in P -minimal structures, in particular for the field of the p -adics. Generalizing Conlon et al. (Transactions of the American Mathematical Society 366(9) (2014), 5043–5065), we show that in distal structures the upper bound for k -ary definable relations is given by the exponential tower of height k−1 .

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
o-minimality; NIP; Ramsey's theorem; p-minimality; polynomially bounded
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690CHERNIKOV, Artem, Sergei STARCHENKO, Margaret E. M. THOMAS, 2021. Ramsey growth in some NIP structures. In: Journal of the Institute of Mathematics of Jussieu. Cambridge University Press. 2021, 20(1), pp. 1-29. ISSN 1474-7480. eISSN 1475-3030. Available under: doi: 10.1017/S1474748019000100
BibTex
@article{Chernikov2021Ramse-53535,
  year={2021},
  doi={10.1017/S1474748019000100},
  title={Ramsey growth in some NIP structures},
  number={1},
  volume={20},
  issn={1474-7480},
  journal={Journal of the Institute of Mathematics of Jussieu},
  pages={1--29},
  author={Chernikov, Artem and Starchenko, Sergei and Thomas, Margaret E. M.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53535">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Chernikov, Artem</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Chernikov, Artem</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53535/1/Chernikov_2-dmntgwgo9r550.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53535/1/Chernikov_2-dmntgwgo9r550.pdf"/>
    <dc:contributor>Thomas, Margaret E. M.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-29T11:47:34Z</dcterms:available>
    <dc:creator>Thomas, Margaret E. M.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-29T11:47:34Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2021</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53535"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">We investigate bounds in Ramsey’s theorem for relations definable in NIP structures. Applying model-theoretic methods to finitary combinatorics, we generalize a theorem of Bukh and Matousek (Duke Mathematical Journal 163(12) (2014), 2243–2270) from the semialgebraic case to arbitrary polynomially bounded o -minimal expansions of R , and show that it does not hold in R&lt;sub&gt;exp&lt;/sub&gt; . This provides a new combinatorial characterization of polynomial boundedness for o -minimal structures. We also prove an analog for relations definable in P -minimal structures, in particular for the field of the p -adics. Generalizing Conlon et al. (Transactions of the American Mathematical Society 366(9) (2014), 5043–5065), we show that in distal structures the upper bound for k -ary definable relations is given by the exponential tower of height k−1 .</dcterms:abstract>
    <dc:contributor>Starchenko, Sergei</dc:contributor>
    <dc:creator>Starchenko, Sergei</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Ramsey growth in some NIP structures</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen