Publikation:

Estimating dynamic copula dependence using intraday data

Lade...
Vorschaubild

Dateien

Grossmass_0-302906.pdf
Grossmass_0-302906.pdfGröße: 1.44 MBDownloads: 373

Datum

2015

Autor:innen

Poon, Ser-Huang

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Studies in Nonlinear Dynamics & Econometrics. 2015, 19(4), pp. 501-529. ISSN 1081-1826. eISSN 1558-3708. Available under: doi: 10.1515/snde-2013-0123

Zusammenfassung

We estimate the dynamic daily dependence between assets by applying the Semiparametric Copula-Based Multivariate Dynamic (SCOMDY) model on intraday data. Using tick data of three stock returns of the period before and during the credit crisis, we find that our dependence estimator better captures the steep increase in dependence during the onset of the crisis as compared to other commonly used time-varying copula methods. Like other high-frequency estimators, we find that the dependence estimator exhibits long memory and forecast it using a HAR model. We show that for out-of-sample forecasts, our dependence estimator performs better than the constant estimator and other commonly used time-varying copula dependence estimators.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

copula, high frequency data, intraday dependence, time-varying dependence, value-at-risk

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GROSSMASS, Lidan, Ser-Huang POON, 2015. Estimating dynamic copula dependence using intraday data. In: Studies in Nonlinear Dynamics & Econometrics. 2015, 19(4), pp. 501-529. ISSN 1081-1826. eISSN 1558-3708. Available under: doi: 10.1515/snde-2013-0123
BibTex
@article{Groma2015Estim-32914,
  year={2015},
  doi={10.1515/snde-2013-0123},
  title={Estimating dynamic copula dependence using intraday data},
  number={4},
  volume={19},
  issn={1081-1826},
  journal={Studies in Nonlinear Dynamics & Econometrics},
  pages={501--529},
  author={Großmaß, Lidan and Poon, Ser-Huang}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32914">
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Poon, Ser-Huang</dc:contributor>
    <dcterms:issued>2015</dcterms:issued>
    <dc:creator>Poon, Ser-Huang</dc:creator>
    <dcterms:abstract xml:lang="eng">We estimate the dynamic daily dependence between assets by applying the Semiparametric Copula-Based Multivariate Dynamic (SCOMDY) model on intraday data. Using tick data of three stock returns of the period before and during the credit crisis, we find that our dependence estimator better captures the steep increase in dependence during the onset of the crisis as compared to other commonly used time-varying copula methods. Like other high-frequency estimators, we find that the dependence estimator exhibits long memory and forecast it using a HAR model. We show that for out-of-sample forecasts, our dependence estimator performs better than the constant estimator and other commonly used time-varying copula dependence estimators.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32914/3/Grossmass_0-302906.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-09T16:13:01Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32914"/>
    <dcterms:title>Estimating dynamic copula dependence using intraday data</dcterms:title>
    <dc:creator>Großmaß, Lidan</dc:creator>
    <dc:contributor>Großmaß, Lidan</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-09T16:13:01Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32914/3/Grossmass_0-302906.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen