Publikation:

Bioinspired Stabilization of Amorphous Calcium Carbonate by Carboxylated Nanocellulose Enables Mechanically Robust, Healable, and Sensing Biocomposites

Lade...
Vorschaubild

Dateien

Wu_2-dcq6ke7flpvc6.pdf
Wu_2-dcq6ke7flpvc6.pdfGröße: 12.89 MBDownloads: 52

Datum

2023

Autor:innen

Wu, Wanlin
Lu, Zhixing
Lu, Canhui
Sun, Xunwen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACS Nano. ACS Publications. 2023, 17(7), pp. 6664-6674. ISSN 1936-0851. eISSN 1936-086X. Available under: doi: 10.1021/acsnano.2c12385

Zusammenfassung

Nature builds numerous structurally complex composites with fascinating mechanical robustness and functionalities by harnessing biopolymers and amorphous calcium carbonate (ACC). The key to successfully mimicking these natural designs is efficiently stabilizing ACC, but developing highly efficient, biodegradable, biocompatible, and sustainable stabilizing agents remains a grand challenge since anhydrous ACC is inherently unstable toward crystallization in the wet state. Inspired by the stabilized ACC in crustacean cuticles, we report the efficient stabilization ability of the most abundant biopolymer–cellulose nanofibrils (CNFs) for ACC. Through the cooperative stabilizing effect of surface carboxyl groups and a rigid segregated network, the CNFs exhibit long-term stability (more than one month) and achieved a stabilization efficiency of 3.6 and 4.4 times that of carboxymethyl cellulose (CMC) and alginate, respectively, even higher than poly(acrylic acid). The resulting CNF/ACC dispersions can be constructed into transparent composite films with the high strength of 286 MPa and toughness up to 28.5 MJ/m3, which surpass those of the so far reported synthetic biopolymer-calcium carbonate/phosphate composites. The dynamic interfacial interaction between nanocomponents also provides the composite films with good self-healing properties. Owing to their good wet stability, the composite films present high humidity sensitivity for monitoring respiration and finger contact.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
540 Chemie

Schlagwörter

amorphous calcium carbonate, biomineralization, nanocellulose, biocomposites, mechanical properties

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690WU, Wanlin, Zhixing LU, Canhui LU, Xunwen SUN, Bing NI, Helmut CÖLFEN, Rui XIONG, 2023. Bioinspired Stabilization of Amorphous Calcium Carbonate by Carboxylated Nanocellulose Enables Mechanically Robust, Healable, and Sensing Biocomposites. In: ACS Nano. ACS Publications. 2023, 17(7), pp. 6664-6674. ISSN 1936-0851. eISSN 1936-086X. Available under: doi: 10.1021/acsnano.2c12385
BibTex
@article{Wu2023Bioin-66793,
  year={2023},
  doi={10.1021/acsnano.2c12385},
  title={Bioinspired Stabilization of Amorphous Calcium Carbonate by Carboxylated Nanocellulose Enables Mechanically Robust, Healable, and Sensing Biocomposites},
  number={7},
  volume={17},
  issn={1936-0851},
  journal={ACS Nano},
  pages={6664--6674},
  author={Wu, Wanlin and Lu, Zhixing and Lu, Canhui and Sun, Xunwen and Ni, Bing and Cölfen, Helmut and Xiong, Rui}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66793">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Wu, Wanlin</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-05-05T06:49:21Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66793/4/Wu_2-dcq6ke7flpvc6.pdf"/>
    <dc:contributor>Wu, Wanlin</dc:contributor>
    <dc:contributor>Lu, Canhui</dc:contributor>
    <dcterms:issued>2023</dcterms:issued>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Cölfen, Helmut</dc:contributor>
    <dcterms:abstract>Nature builds numerous structurally complex composites with fascinating mechanical robustness and functionalities by harnessing biopolymers and amorphous calcium carbonate (ACC). The key to successfully mimicking these natural designs is efficiently stabilizing ACC, but developing highly efficient, biodegradable, biocompatible, and sustainable stabilizing agents remains a grand challenge since anhydrous ACC is inherently unstable toward crystallization in the wet state. Inspired by the stabilized ACC in crustacean cuticles, we report the efficient stabilization ability of the most abundant biopolymer–cellulose nanofibrils (CNFs) for ACC. Through the cooperative stabilizing effect of surface carboxyl groups and a rigid segregated network, the CNFs exhibit long-term stability (more than one month) and achieved a stabilization efficiency of 3.6 and 4.4 times that of carboxymethyl cellulose (CMC) and alginate, respectively, even higher than poly(acrylic acid). The resulting CNF/ACC dispersions can be constructed into transparent composite films with the high strength of 286 MPa and toughness up to 28.5 MJ/m3, which surpass those of the so far reported synthetic biopolymer-calcium carbonate/phosphate composites. The dynamic interfacial interaction between nanocomponents also provides the composite films with good self-healing properties. Owing to their good wet stability, the composite films present high humidity sensitivity for monitoring respiration and finger contact.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:contributor>Ni, Bing</dc:contributor>
    <dc:contributor>Lu, Zhixing</dc:contributor>
    <dc:creator>Lu, Zhixing</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66793/4/Wu_2-dcq6ke7flpvc6.pdf"/>
    <dc:creator>Ni, Bing</dc:creator>
    <dc:creator>Lu, Canhui</dc:creator>
    <dc:creator>Cölfen, Helmut</dc:creator>
    <dc:creator>Sun, Xunwen</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66793"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Bioinspired Stabilization of Amorphous Calcium Carbonate by Carboxylated Nanocellulose Enables Mechanically Robust, Healable, and Sensing Biocomposites</dcterms:title>
    <dc:contributor>Sun, Xunwen</dc:contributor>
    <dc:creator>Xiong, Rui</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-05-05T06:49:21Z</dc:date>
    <dc:contributor>Xiong, Rui</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen