Publikation:

A Spectral Visualization System for Analyzing Financial Time Series Data

Lade...
Vorschaubild

Datum

2006

Autor:innen

Nietzschmann, Tilo
Schelwies, Norman
Schneidewind, Jörn

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

EUROVIS 2006: Eurographics/IEEE TCVG Symposium on Visualization. 2006, pp. 195-202. Available under: doi: 10.2312/VisSym/EuroVis06/195-202

Zusammenfassung

Visual data analysis of time related data sets has attracted much research interest recently, and a number of sophisticated visualization methods have been proposed in the past. In financial analysis, however, the most important and most common visualization techniques for time series data is the traditional line- or bar chart. Although these are intuitive and make it easy to spot the effect of key events on a asset s price, and its return over a given period of time, price charts do not allow the easy perception of relative movements in terms of growth rates, which is the key feature of any price-related time series. This paper presents a novel Growth Matrix visualization technique for analyzing assets. It extends the ability of existing chart techniques by not only visualizing asset return rates over fixed time frames, but over the full spectrum of all subintervals present in a given time frame, in a single view. At the same time, the technique allows a comparison of subinterval return rates among groups of even a few hundreds of assets. This provides a powerful way for analyzing financial data, since it allows the identification of strong and weak periods of assets as compared to global market characteristics, and thus allows a more encompassing visual classification into good and poor" performers than existing chart techniques. We illustrate the technique by real-world examples showing the abilities of the new approach, and its high relevance for financial analysis tasks.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Eurographics/IEEE TCVG Symposium on Visualization, 8. Mai 2006 - 10. Mai 2006, Lisbon, Portugal
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KEIM, Daniel A., Tilo NIETZSCHMANN, Norman SCHELWIES, Jörn SCHNEIDEWIND, Tobias SCHRECK, Hartmut ZIEGLER, 2006. A Spectral Visualization System for Analyzing Financial Time Series Data. Eurographics/IEEE TCVG Symposium on Visualization. Lisbon, Portugal, 8. Mai 2006 - 10. Mai 2006. In: EUROVIS 2006: Eurographics/IEEE TCVG Symposium on Visualization. 2006, pp. 195-202. Available under: doi: 10.2312/VisSym/EuroVis06/195-202
BibTex
@inproceedings{Keim2006Spect-5565,
  year={2006},
  doi={10.2312/VisSym/EuroVis06/195-202},
  title={A Spectral Visualization System for Analyzing Financial Time Series Data},
  booktitle={EUROVIS 2006: Eurographics/IEEE TCVG Symposium on Visualization},
  pages={195--202},
  author={Keim, Daniel A. and Nietzschmann, Tilo and Schelwies, Norman and Schneidewind, Jörn and Schreck, Tobias and Ziegler, Hartmut}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5565">
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5565/1/A_Spectral_Visualization_System_for_Analyzing_Financial_Time_Series_Data.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:format>application/pdf</dc:format>
    <dc:contributor>Nietzschmann, Tilo</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Schelwies, Norman</dc:creator>
    <dcterms:bibliographicCitation>First publ. in: EUROVIS 2006: Eurographics/IEEE TCVG Symposium on Visualization; Lisbon, Portugal, May 8th-10th, 2006, pp. 195-202</dcterms:bibliographicCitation>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:28Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Schneidewind, Jörn</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Ziegler, Hartmut</dc:creator>
    <dcterms:abstract xml:lang="eng">Visual data analysis of time related data sets has attracted much research interest recently, and a number of sophisticated visualization methods have been proposed in the past. In financial analysis, however, the most important and most common visualization techniques for time series data is the traditional line- or bar chart. Although these are intuitive and make it easy to spot the effect of key events on a asset s price, and its return over a given period of time, price charts do not allow the easy perception of relative movements in terms of growth rates, which is the key feature of any price-related time series. This paper presents a novel Growth Matrix visualization technique for analyzing assets. It extends the ability of existing chart techniques by not only visualizing asset return rates over fixed time frames, but over the full spectrum of all subintervals present in a given time frame, in a single view. At the same time, the technique allows a comparison of subinterval return rates among groups of even a few hundreds of assets. This provides a powerful way for analyzing financial data, since it allows the identification of strong and weak periods of assets as compared to global market characteristics, and thus allows a more encompassing visual classification into  good  and  poor" performers than existing chart techniques. We illustrate the technique by real-world examples showing the abilities of the new approach, and its high relevance for financial analysis tasks.</dcterms:abstract>
    <dcterms:issued>2006</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5565/1/A_Spectral_Visualization_System_for_Analyzing_Financial_Time_Series_Data.pdf"/>
    <dc:contributor>Schelwies, Norman</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5565"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:28Z</dcterms:available>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:contributor>Schneidewind, Jörn</dc:contributor>
    <dc:creator>Nietzschmann, Tilo</dc:creator>
    <dcterms:title>A Spectral Visualization System for Analyzing Financial Time Series Data</dcterms:title>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:contributor>Ziegler, Hartmut</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen