Employing virtual reality to reveal individual locusts' decision-making
Employing virtual reality to reveal individual locusts' decision-making
Loading...
Date
2020
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Diploma thesis
Publication status
Published
Published in
Abstract
Animals are constantly faced with choices where to feed, move next, or search for night shelter. Appropriate choices maximize survival and reproductive success. Research on decision-making in animals has mainly focused on which choice animals make, rather than on how they choose. In collectives, the mechanism of decision-making has been studied extensively in the last twenty years, yet little is known about the underlying mechanism in the individual's brain. Sridhar et al. (in prep) propose a neuronal model that describes the underlying mechanism of an individual's decision-making process. It predicts animals to average the direction of presented targets, moving in the centroid direction. As the angle between targets increases, the animal bifurcates at a critical angle, and eventually turns towards one of the targets. Multi-choice situations are then broken down to binary choices, successively eliminating choices, and resulting in a multi-bifurcation pattern. Sridhar et al. validate the model experimentally in Drosophila melanogaster, yet with kinematic limitations. Here, I tested the model's spatial and kinematic predictions of decision-making in the desert locust Schistocerca gregaria. In a state-of-the-art virtual reality system, I presented freely walking individual locusts with equally attractive targets. In accord with the model's predictions, locusts made decisions in a (multi-)bifurcation pattern. These cross-species results suggest that the model represents a generic, species-unspecific algorithm, robust across scales and therefore applicable to both individual and collective decision-making.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
virtual reality for animals, VR, decision-making, locusts, Schistocerca gregaria
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
SCHELL, Bianca Ricarda, 2020. Employing virtual reality to reveal individual locusts' decision-making [Master thesis]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Schell2020Emplo-51450, year={2020}, title={Employing virtual reality to reveal individual locusts' decision-making}, address={Konstanz}, school={Universität Konstanz}, author={Schell, Bianca Ricarda} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51450"> <dcterms:title>Employing virtual reality to reveal individual locusts' decision-making</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-22T12:28:15Z</dcterms:available> <dc:creator>Schell, Bianca Ricarda</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51450/3/Schell_2-d7hoztrcxjqb1.pdf"/> <dcterms:abstract xml:lang="eng">Animals are constantly faced with choices where to feed, move next, or search for night shelter. Appropriate choices maximize survival and reproductive success. Research on decision-making in animals has mainly focused on which choice animals make, rather than on how they choose. In collectives, the mechanism of decision-making has been studied extensively in the last twenty years, yet little is known about the underlying mechanism in the individual's brain. Sridhar et al. (in prep) propose a neuronal model that describes the underlying mechanism of an individual's decision-making process. It predicts animals to average the direction of presented targets, moving in the centroid direction. As the angle between targets increases, the animal bifurcates at a critical angle, and eventually turns towards one of the targets. Multi-choice situations are then broken down to binary choices, successively eliminating choices, and resulting in a multi-bifurcation pattern. Sridhar et al. validate the model experimentally in Drosophila melanogaster, yet with kinematic limitations. Here, I tested the model's spatial and kinematic predictions of decision-making in the desert locust Schistocerca gregaria. In a state-of-the-art virtual reality system, I presented freely walking individual locusts with equally attractive targets. In accord with the model's predictions, locusts made decisions in a (multi-)bifurcation pattern. These cross-species results suggest that the model represents a generic, species-unspecific algorithm, robust across scales and therefore applicable to both individual and collective decision-making.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-22T12:28:15Z</dc:date> <dcterms:issued>2020</dcterms:issued> <dc:contributor>Schell, Bianca Ricarda</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51450"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51450/3/Schell_2-d7hoztrcxjqb1.pdf"/> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
University note
Konstanz, Universität Konstanz, Master thesis, 2020
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes