Employing virtual reality to reveal individual locusts' decision-making

Lade...
Vorschaubild
Dateien
Schell_2-d7hoztrcxjqb1.pdf
Schell_2-d7hoztrcxjqb1.pdfGröße: 1.1 MBDownloads: 193
Datum
2020
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Animals are constantly faced with choices where to feed, move next, or search for night shelter. Appropriate choices maximize survival and reproductive success. Research on decision-making in animals has mainly focused on which choice animals make, rather than on how they choose. In collectives, the mechanism of decision-making has been studied extensively in the last twenty years, yet little is known about the underlying mechanism in the individual's brain. Sridhar et al. (in prep) propose a neuronal model that describes the underlying mechanism of an individual's decision-making process. It predicts animals to average the direction of presented targets, moving in the centroid direction. As the angle between targets increases, the animal bifurcates at a critical angle, and eventually turns towards one of the targets. Multi-choice situations are then broken down to binary choices, successively eliminating choices, and resulting in a multi-bifurcation pattern. Sridhar et al. validate the model experimentally in Drosophila melanogaster, yet with kinematic limitations. Here, I tested the model's spatial and kinematic predictions of decision-making in the desert locust Schistocerca gregaria. In a state-of-the-art virtual reality system, I presented freely walking individual locusts with equally attractive targets. In accord with the model's predictions, locusts made decisions in a (multi-)bifurcation pattern. These cross-species results suggest that the model represents a generic, species-unspecific algorithm, robust across scales and therefore applicable to both individual and collective decision-making.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
virtual reality for animals, VR, decision-making, locusts, Schistocerca gregaria
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SCHELL, Bianca R., 2020. Employing virtual reality to reveal individual locusts' decision-making [Master thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Schell2020Emplo-51450,
  year={2020},
  title={Employing virtual reality to reveal individual locusts' decision-making},
  address={Konstanz},
  school={Universität Konstanz},
  author={Schell, Bianca R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51450">
    <dcterms:title>Employing virtual reality to reveal individual locusts' decision-making</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-22T12:28:15Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51450/3/Schell_2-d7hoztrcxjqb1.pdf"/>
    <dcterms:abstract xml:lang="eng">Animals are constantly faced with choices where to feed, move next, or search for night shelter. Appropriate choices maximize survival and reproductive success. Research on decision-making in animals has mainly focused on which choice animals make, rather than on how they choose. In collectives, the mechanism of decision-making has been studied extensively in the last twenty years, yet little is known about the underlying mechanism in the individual's brain. Sridhar et al. (in prep) propose a neuronal model that describes the underlying mechanism of an individual's decision-making process. It predicts animals to average the direction of presented targets, moving in the centroid direction. As the angle between targets increases, the animal bifurcates at a critical angle, and eventually turns towards one of the targets. Multi-choice situations are then broken down to binary choices, successively eliminating choices, and resulting in a multi-bifurcation pattern. Sridhar et al. validate the model experimentally in Drosophila melanogaster, yet with kinematic limitations. Here, I tested the model's spatial and kinematic predictions of decision-making in the desert locust Schistocerca gregaria. In a state-of-the-art virtual reality system, I presented freely walking individual locusts with equally attractive targets. In accord with the model's predictions, locusts made decisions in a (multi-)bifurcation pattern. These cross-species results suggest that the model represents a generic, species-unspecific algorithm, robust across scales and therefore applicable to both individual and collective decision-making.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Schell, Bianca R.</dc:contributor>
    <dc:creator>Schell, Bianca R.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-22T12:28:15Z</dc:date>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51450"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51450/3/Schell_2-d7hoztrcxjqb1.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2020
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen