Employing virtual reality to reveal individual locusts' decision-making
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Animals are constantly faced with choices where to feed, move next, or search for night shelter. Appropriate choices maximize survival and reproductive success. Research on decision-making in animals has mainly focused on which choice animals make, rather than on how they choose. In collectives, the mechanism of decision-making has been studied extensively in the last twenty years, yet little is known about the underlying mechanism in the individual's brain. Sridhar et al. (in prep) propose a neuronal model that describes the underlying mechanism of an individual's decision-making process. It predicts animals to average the direction of presented targets, moving in the centroid direction. As the angle between targets increases, the animal bifurcates at a critical angle, and eventually turns towards one of the targets. Multi-choice situations are then broken down to binary choices, successively eliminating choices, and resulting in a multi-bifurcation pattern. Sridhar et al. validate the model experimentally in Drosophila melanogaster, yet with kinematic limitations. Here, I tested the model's spatial and kinematic predictions of decision-making in the desert locust Schistocerca gregaria. In a state-of-the-art virtual reality system, I presented freely walking individual locusts with equally attractive targets. In accord with the model's predictions, locusts made decisions in a (multi-)bifurcation pattern. These cross-species results suggest that the model represents a generic, species-unspecific algorithm, robust across scales and therefore applicable to both individual and collective decision-making.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHELL, Bianca R., 2020. Employing virtual reality to reveal individual locusts' decision-making [Master thesis]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Schell2020Emplo-51450, year={2020}, title={Employing virtual reality to reveal individual locusts' decision-making}, address={Konstanz}, school={Universität Konstanz}, author={Schell, Bianca R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51450"> <dcterms:title>Employing virtual reality to reveal individual locusts' decision-making</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-22T12:28:15Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51450/3/Schell_2-d7hoztrcxjqb1.pdf"/> <dcterms:abstract xml:lang="eng">Animals are constantly faced with choices where to feed, move next, or search for night shelter. Appropriate choices maximize survival and reproductive success. Research on decision-making in animals has mainly focused on which choice animals make, rather than on how they choose. In collectives, the mechanism of decision-making has been studied extensively in the last twenty years, yet little is known about the underlying mechanism in the individual's brain. Sridhar et al. (in prep) propose a neuronal model that describes the underlying mechanism of an individual's decision-making process. It predicts animals to average the direction of presented targets, moving in the centroid direction. As the angle between targets increases, the animal bifurcates at a critical angle, and eventually turns towards one of the targets. Multi-choice situations are then broken down to binary choices, successively eliminating choices, and resulting in a multi-bifurcation pattern. Sridhar et al. validate the model experimentally in Drosophila melanogaster, yet with kinematic limitations. Here, I tested the model's spatial and kinematic predictions of decision-making in the desert locust Schistocerca gregaria. In a state-of-the-art virtual reality system, I presented freely walking individual locusts with equally attractive targets. In accord with the model's predictions, locusts made decisions in a (multi-)bifurcation pattern. These cross-species results suggest that the model represents a generic, species-unspecific algorithm, robust across scales and therefore applicable to both individual and collective decision-making.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Schell, Bianca R.</dc:contributor> <dc:creator>Schell, Bianca R.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-22T12:28:15Z</dc:date> <dcterms:issued>2020</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51450"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51450/3/Schell_2-d7hoztrcxjqb1.pdf"/> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>