Training effect of exchange-bias bilayers within the domain state model
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
An investigation of the temperature dependence of the training effect of various exchange coupled bilayers with different types of anisotropy is presented. We use an atomistic model for the magnetic interactions within a classical Heisenberg spin Hamiltonian. In general, the behavior of the exchange-bias field is separated into low- and high-temperature regions. This separation is made according to the trend of exchange-bias field after the second hysteresis loop and the parameters of the power-law fit for these fields. It is found that with increasing antiferromagnetic thickness, systems follow the same temperature trend but with lower values of the exchange-bias field and a weaker training effect. This is due to the fact that thicker antiferromagnetic layers lead to increased stability of the antiferromagnetic domains. Also, the behavior of the coercive fields is investigated, concluding that the training effect occurs predominantly in the first half of the hysteresis loop.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BITERNAS, Andreas G., Ulrich NOWAK, Roy W. CHANTRELL, 2009. Training effect of exchange-bias bilayers within the domain state model. In: Physical Review B. 2009, 80, 134419. Available under: doi: 10.1103/PhysRevB.80.134419BibTex
@article{Biternas2009Train-9297, year={2009}, doi={10.1103/PhysRevB.80.134419}, title={Training effect of exchange-bias bilayers within the domain state model}, volume={80}, journal={Physical Review B}, author={Biternas, Andreas G. and Nowak, Ulrich and Chantrell, Roy W.}, note={Article Number: 134419} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/9297"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:55:16Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9297/1/2009PRBbias.pdf"/> <dcterms:title>Training effect of exchange-bias bilayers within the domain state model</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">An investigation of the temperature dependence of the training effect of various exchange coupled bilayers with different types of anisotropy is presented. We use an atomistic model for the magnetic interactions within a classical Heisenberg spin Hamiltonian. In general, the behavior of the exchange-bias field is separated into low- and high-temperature regions. This separation is made according to the trend of exchange-bias field after the second hysteresis loop and the parameters of the power-law fit for these fields. It is found that with increasing antiferromagnetic thickness, systems follow the same temperature trend but with lower values of the exchange-bias field and a weaker training effect. This is due to the fact that thicker antiferromagnetic layers lead to increased stability of the antiferromagnetic domains. Also, the behavior of the coercive fields is investigated, concluding that the training effect occurs predominantly in the first half of the hysteresis loop.</dcterms:abstract> <dcterms:bibliographicCitation>First publ. in: Physical Review B 80 (2009), 134419</dcterms:bibliographicCitation> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9297/1/2009PRBbias.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:55:16Z</dcterms:available> <dcterms:issued>2009</dcterms:issued> <dc:creator>Nowak, Ulrich</dc:creator> <dc:contributor>Nowak, Ulrich</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/9297"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Biternas, Andreas G.</dc:contributor> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Chantrell, Roy W.</dc:creator> <dc:format>application/pdf</dc:format> <dc:contributor>Chantrell, Roy W.</dc:contributor> <dc:creator>Biternas, Andreas G.</dc:creator> </rdf:Description> </rdf:RDF>