Topic Tracker : Shape-based Visualization for Trend and Sentiment Tracking in Twitter
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In recent years there has been a continuous development of social media services on the web. Unprecedented success and active usage of these services result in massive amounts of user-generated data. Visual representation of these large amounts of unevenly distributed time series data is a challenging task, especially while preserving access to individual data points. Our hypothesis is that shape-based visual representations have advantages over established time series compression visualizations like Two-Tone Pseudo Coloring or line graphs. In this paper we present a shape-based visualization for trend and sentiment tracking of user-defined topics in the Twitter data stream. We use glyphs to visualize the appearance and sentiment of tweets on a timeline and enable analysts to keep track of the trend of their defined topic and the corresponding sentiment expressed by the Twitter users.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WANNER, Franz, Andreas WEILER, Tobias SCHRECK, 2012. Topic Tracker : Shape-based Visualization for Trend and Sentiment Tracking in Twitter. VisWeek. Seattle, 14. Okt. 2012 - 19. Okt. 2012. In: Task-Driven Analysis of Social Media : The 2nd Workshop on Interactive Visual Text Analytics. Part of the VisWeek 2012, October 14 - 19, 2012, Seattle. 2012BibTex
@inproceedings{Wanner2012Topic-26415, year={2012}, title={Topic Tracker : Shape-based Visualization for Trend and Sentiment Tracking in Twitter}, booktitle={Task-Driven Analysis of Social Media : The 2nd Workshop on Interactive Visual Text Analytics. Part of the VisWeek 2012, October 14 - 19, 2012, Seattle}, author={Wanner, Franz and Weiler, Andreas and Schreck, Tobias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26415"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Topic Tracker : Shape-based Visualization for Trend and Sentiment Tracking in Twitter</dcterms:title> <dcterms:issued>2012</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Schreck, Tobias</dc:creator> <dc:contributor>Schreck, Tobias</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26415"/> <dc:creator>Weiler, Andreas</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Wanner, Franz</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26415/2/Wanner_264159.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26415/2/Wanner_264159.pdf"/> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Wanner, Franz</dc:contributor> <dc:contributor>Weiler, Andreas</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-28T10:31:37Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-28T10:31:37Z</dcterms:available> <dcterms:abstract xml:lang="eng">In recent years there has been a continuous development of social media services on the web. Unprecedented success and active usage of these services result in massive amounts of user-generated data. Visual representation of these large amounts of unevenly distributed time series data is a challenging task, especially while preserving access to individual data points. Our hypothesis is that shape-based visual representations have advantages over established time series compression visualizations like Two-Tone Pseudo Coloring or line graphs. In this paper we present a shape-based visualization for trend and sentiment tracking of user-defined topics in the Twitter data stream. We use glyphs to visualize the appearance and sentiment of tweets on a timeline and enable analysts to keep track of the trend of their defined topic and the corresponding sentiment expressed by the Twitter users.</dcterms:abstract> <dcterms:bibliographicCitation>Vortrag gehalten bei: Task-Driven Analysis of Social Media : The 2nd Workshop on Interactive Visual Text Analytics. Part of the VisWeek 2012, October 14-19, 2012, Seattle</dcterms:bibliographicCitation> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>