Publikation:

Topic Tracker : Shape-based Visualization for Trend and Sentiment Tracking in Twitter

Lade...
Vorschaubild

Dateien

Wanner_264159.pdf
Wanner_264159.pdfGröße: 497.24 KBDownloads: 224

Datum

2012

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Task-Driven Analysis of Social Media : The 2nd Workshop on Interactive Visual Text Analytics. Part of the VisWeek 2012, October 14 - 19, 2012, Seattle. 2012

Zusammenfassung

In recent years there has been a continuous development of social media services on the web. Unprecedented success and active usage of these services result in massive amounts of user-generated data. Visual representation of these large amounts of unevenly distributed time series data is a challenging task, especially while preserving access to individual data points. Our hypothesis is that shape-based visual representations have advantages over established time series compression visualizations like Two-Tone Pseudo Coloring or line graphs. In this paper we present a shape-based visualization for trend and sentiment tracking of user-defined topics in the Twitter data stream. We use glyphs to visualize the appearance and sentiment of tweets on a timeline and enable analysts to keep track of the trend of their defined topic and the corresponding sentiment expressed by the Twitter users.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

VisWeek, 14. Okt. 2012 - 19. Okt. 2012, Seattle
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WANNER, Franz, Andreas WEILER, Tobias SCHRECK, 2012. Topic Tracker : Shape-based Visualization for Trend and Sentiment Tracking in Twitter. VisWeek. Seattle, 14. Okt. 2012 - 19. Okt. 2012. In: Task-Driven Analysis of Social Media : The 2nd Workshop on Interactive Visual Text Analytics. Part of the VisWeek 2012, October 14 - 19, 2012, Seattle. 2012
BibTex
@inproceedings{Wanner2012Topic-26415,
  year={2012},
  title={Topic Tracker : Shape-based Visualization for Trend and Sentiment Tracking in Twitter},
  booktitle={Task-Driven Analysis of Social Media : The 2nd Workshop on Interactive Visual Text Analytics. Part of the VisWeek 2012, October 14 - 19, 2012, Seattle},
  author={Wanner, Franz and Weiler, Andreas and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26415">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Topic Tracker : Shape-based Visualization for Trend and Sentiment Tracking in Twitter</dcterms:title>
    <dcterms:issued>2012</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26415"/>
    <dc:creator>Weiler, Andreas</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Wanner, Franz</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26415/2/Wanner_264159.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26415/2/Wanner_264159.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Wanner, Franz</dc:contributor>
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-28T10:31:37Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-28T10:31:37Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">In recent years there has been a continuous development of social media services on the web. Unprecedented success and active usage of these services result in massive amounts of user-generated data. Visual representation of these large amounts of unevenly distributed time series data is a challenging task, especially while preserving access to individual data points. Our hypothesis is that shape-based visual representations have advantages over established time series compression visualizations like Two-Tone Pseudo Coloring or line graphs. In this paper we present a shape-based visualization for trend and sentiment tracking of user-defined topics in the Twitter data stream. We use glyphs to visualize the appearance and sentiment of tweets on a timeline and enable analysts to keep track of the trend of their defined topic and the corresponding sentiment expressed by the Twitter users.</dcterms:abstract>
    <dcterms:bibliographicCitation>Vortrag gehalten bei: Task-Driven Analysis of Social Media : The 2nd Workshop on Interactive Visual Text Analytics. Part of the VisWeek 2012, October 14-19, 2012, Seattle</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen