Formulation and numerical solution of finite-level quantum optimal control problems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Optimal control of finite-level quantum systems is investigated, and iterative solution schemes for the optimization of a control representing laser pulses are developed. The purpose of this external field is to channel the system's wavefunction between given states in its most efficient way. Physically motivated constraints, such as limited laser resources or population suppression of certain states, are accounted for through an appropriately chosen cost functional. First-order necessary optimality conditions and second-order sufficient optimality conditions are investigated. For solving the optimal control problems, a cascadic non-linear conjugate gradient scheme and a monotonic scheme are discussed. Results of numerical experiments with a representative finite-level quantum system demonstrate the effectiveness of the optimal control formulation and efficiency and robustness of the proposed approaches.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BORZÌ, Alfio, Julien SALOMON, Stefan VOLKWEIN, 2008. Formulation and numerical solution of finite-level quantum optimal control problems. In: Journal of Computational and Applied Mathematics. 2008, 216(1), pp. 170-197. ISSN 0377-0427. eISSN 1879-1778. Available under: doi: 10.1016/j.cam.2007.04.029BibTex
@article{Borzi2008-06Formu-41168, year={2008}, doi={10.1016/j.cam.2007.04.029}, title={Formulation and numerical solution of finite-level quantum optimal control problems}, number={1}, volume={216}, issn={0377-0427}, journal={Journal of Computational and Applied Mathematics}, pages={170--197}, author={Borzì, Alfio and Salomon, Julien and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41168"> <dc:creator>Salomon, Julien</dc:creator> <dc:contributor>Salomon, Julien</dc:contributor> <dc:creator>Borzì, Alfio</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-29T09:54:52Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-29T09:54:52Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41168"/> <dc:creator>Volkwein, Stefan</dc:creator> <dc:language>eng</dc:language> <dcterms:title>Formulation and numerical solution of finite-level quantum optimal control problems</dcterms:title> <dc:contributor>Borzì, Alfio</dc:contributor> <dc:contributor>Volkwein, Stefan</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2008-06</dcterms:issued> <dcterms:abstract xml:lang="eng">Optimal control of finite-level quantum systems is investigated, and iterative solution schemes for the optimization of a control representing laser pulses are developed. The purpose of this external field is to channel the system's wavefunction between given states in its most efficient way. Physically motivated constraints, such as limited laser resources or population suppression of certain states, are accounted for through an appropriately chosen cost functional. First-order necessary optimality conditions and second-order sufficient optimality conditions are investigated. For solving the optimal control problems, a cascadic non-linear conjugate gradient scheme and a monotonic scheme are discussed. Results of numerical experiments with a representative finite-level quantum system demonstrate the effectiveness of the optimal control formulation and efficiency and robustness of the proposed approaches.</dcterms:abstract> </rdf:Description> </rdf:RDF>