Kernel smoothed prediction intervals for ARMA models
Lade...
Dateien
Datum
2002
Autor:innen
Abberger, Klaus
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung
The procedures of estimating prediction intervals for ARMA processes can be divided into model based methods and empirical methods. Model based methods require knowledge of the model and the underlying innovation dis- tribution. Empirical methods are based on the sample forecast errors. In this paper we apply nonparametric quantile regression to the empirical fore- cast errors using lead time as regressor. With this method there is no need for a distribution assumption. But for the data pattern in this case a double kernel method which allows smoothing in two directions is required. An estimation algorithm is presented and applied to some simulation examples.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Forecasting, Prediction intervals, Non normal distributions, Nonparametric estimation, Quanrile regression
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
ABBERGER, Klaus, 2002. Kernel smoothed prediction intervals for ARMA modelsBibTex
@techreport{Abberger2002Kerne-537, year={2002}, series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie}, title={Kernel smoothed prediction intervals for ARMA models}, number={2002/02}, author={Abberger, Klaus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/537"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:58Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Kernel smoothed prediction intervals for ARMA models</dcterms:title> <dc:creator>Abberger, Klaus</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Abberger, Klaus</dc:contributor> <dcterms:abstract xml:lang="eng">The procedures of estimating prediction intervals for ARMA processes can be divided into model based methods and empirical methods. Model based methods require knowledge of the model and the underlying innovation dis- tribution. Empirical methods are based on the sample forecast errors. In this paper we apply nonparametric quantile regression to the empirical fore- cast errors using lead time as regressor. With this method there is no need for a distribution assumption. But for the data pattern in this case a double kernel method which allows smoothing in two directions is required. An estimation algorithm is presented and applied to some simulation examples.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/537"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:58Z</dcterms:available> <dc:format>application/pdf</dc:format> <dcterms:issued>2002</dcterms:issued> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/537/1/dp0202.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/537/1/dp0202.pdf"/> </rdf:Description> </rdf:RDF>