Publikation:

Kernel smoothed prediction intervals for ARMA models

Lade...
Vorschaubild

Dateien

dp0202.pdf
dp0202.pdfGröße: 222.66 KBDownloads: 262

Datum

2002

Autor:innen

Abberger, Klaus

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

The procedures of estimating prediction intervals for ARMA processes can be divided into model based methods and empirical methods. Model based methods require knowledge of the model and the underlying innovation dis- tribution. Empirical methods are based on the sample forecast errors. In this paper we apply nonparametric quantile regression to the empirical fore- cast errors using lead time as regressor. With this method there is no need for a distribution assumption. But for the data pattern in this case a double kernel method which allows smoothing in two directions is required. An estimation algorithm is presented and applied to some simulation examples.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Forecasting, Prediction intervals, Non normal distributions, Nonparametric estimation, Quanrile regression

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ABBERGER, Klaus, 2002. Kernel smoothed prediction intervals for ARMA models
BibTex
@techreport{Abberger2002Kerne-537,
  year={2002},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={Kernel smoothed prediction intervals for ARMA models},
  number={2002/02},
  author={Abberger, Klaus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/537">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:58Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Kernel smoothed prediction intervals for ARMA models</dcterms:title>
    <dc:creator>Abberger, Klaus</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Abberger, Klaus</dc:contributor>
    <dcterms:abstract xml:lang="eng">The procedures of estimating prediction intervals for ARMA processes can be divided into model based methods and empirical methods. Model based methods require knowledge of the model and the underlying innovation dis- tribution. Empirical methods are based on the sample forecast errors. In this paper we apply nonparametric quantile regression to the empirical fore- cast errors using lead time as regressor. With this method there is no need for a distribution assumption. But for the data pattern in this case a double kernel method which allows smoothing in two directions is required. An estimation algorithm is presented and applied to some simulation examples.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/537"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:58Z</dcterms:available>
    <dc:format>application/pdf</dc:format>
    <dcterms:issued>2002</dcterms:issued>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/537/1/dp0202.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/537/1/dp0202.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen