Semiparametric Modeling of Stochastic and Deterministic Trends and Fractional Stationarity
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The distinction between stationarity, difference stationarity, deterministic trends as well as between short- and long-range dependence has a major impact on statistical conclusions, such as confidence intervals for population quantities or point and interval forecasts. SEMIFAR models introduced by [6] provide a unified approach that allows for simultaneous modelling of and distinction between deterministic trends, difference stationarity and stationarity with short- and long-range dependence. In this paper, recent results on the SEMIFAR models are summarized and their potential usefulness for economic time series analysis is illustrated by analyzing several commodities, exchange rates, the volatility of stock market indices and some simulated series. Predictions combine stochastic prediction of the random part with functional extrapolation of the deterministic part.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERAN, Jan, Yuanhua FENG, Günter FRANKE, Dieter HESS, Dirk OCKER, 2003. Semiparametric Modeling of Stochastic and Deterministic Trends and Fractional Stationarity. In: RANGARAJAN, Govindan, ed., Mingzhou DING, ed.. Processes with Long-Range Correlations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 225-250. Lecture Notes in Physics. 621. ISBN 978-3-540-40129-2. Available under: doi: 10.1007/3-540-44832-2_13BibTex
@incollection{Beran2003Semip-652, year={2003}, doi={10.1007/3-540-44832-2_13}, title={Semiparametric Modeling of Stochastic and Deterministic Trends and Fractional Stationarity}, number={621}, isbn={978-3-540-40129-2}, publisher={Springer Berlin Heidelberg}, address={Berlin, Heidelberg}, series={Lecture Notes in Physics}, booktitle={Processes with Long-Range Correlations}, pages={225--250}, editor={Rangarajan, Govindan and Ding, Mingzhou}, author={Beran, Jan and Feng, Yuanhua and Franke, Günter and Hess, Dieter and Ocker, Dirk} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/652"> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/652"/> <dc:creator>Franke, Günter</dc:creator> <dcterms:issued>2003</dcterms:issued> <dc:creator>Beran, Jan</dc:creator> <dc:format>application/pdf</dc:format> <dcterms:title>Semiparametric Modeling of Stochastic and Deterministic Trends and Fractional Stationarity</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/652/1/Semiparametric_Modeling_of_Stochastic.pdf"/> <dc:contributor>Feng, Yuanhua</dc:contributor> <dc:creator>Hess, Dieter</dc:creator> <dcterms:abstract xml:lang="eng">The distinction between stationarity, difference stationarity, deterministic trends as well as between short- and long-range dependence has a major impact on statistical conclusions, such as confidence intervals for population quantities or point and interval forecasts. SEMIFAR models introduced by [6] provide a unified approach that allows for simultaneous modelling of and distinction between deterministic trends, difference stationarity and stationarity with short- and long-range dependence. In this paper, recent results on the SEMIFAR models are summarized and their potential usefulness for economic time series analysis is illustrated by analyzing several commodities, exchange rates, the volatility of stock market indices and some simulated series. Predictions combine stochastic prediction of the random part with functional extrapolation of the deterministic part.</dcterms:abstract> <dcterms:bibliographicCitation>Processes with long range correlations : theory and applications / Govindan Rangarajan, Mingzhou Ding (eds.). - Berlin [u.a.] : Springer, 2003. S. 225-250. - (Lecture notes in physics ; 621). - ISBN 978-3-540-40129-2</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:23Z</dcterms:available> <dc:contributor>Beran, Jan</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:23Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Hess, Dieter</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/652/1/Semiparametric_Modeling_of_Stochastic.pdf"/> <dc:contributor>Franke, Günter</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Ocker, Dirk</dc:contributor> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Ocker, Dirk</dc:creator> <dc:creator>Feng, Yuanhua</dc:creator> </rdf:Description> </rdf:RDF>