Scalable Landmark Hub Labeling for Optimal and Bounded Suboptimal Pathfinding

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2024
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
LARSON, Kate, Hrsg.. Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence. IJCAI, 2024, S. 6788-6795. ISBN 978-1-956792-04-1. Verfügbar unter: doi: 10.24963/ijcai.2024/750
Zusammenfassung

Hub Labeling and A* are two well-established algorithms for shortest path computation in large graphs. Hub Labeling offers excellent query times for distance computation, but at the cost of a high space consumption for label storage. Landmark-based A* search requires less space but answers queries much slower. Recently, Landmark Hub Labeling (LHL) has been proposed, which combines both concepts and achieves a smaller space consumption than Hub Labeling and also much better query times than A*. However, the known algorithms for computing a LHL do not scale to large graphs, limiting its applicability. In this paper, we devise novel algorithms for LHL construction that work on graphs with millions of edges. We also further improve the LHL query answering algorithm and investigate how to reduce the space consumption of labeling techniques by performing bounded suboptimal pathfinding. In an extensive experimental study, we demonstrate the effectiveness of our methods and illuminate that sensible trade-offs between space consumption, query time, and path quality can be achieved with LHL.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
33rd International Joint Conference on Artificial Intelligence (IJCAI-24), 3. Aug. 2024 - 9. Aug. 2024, Jeju, South Korea
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690STORANDT, Sabine, 2024. Scalable Landmark Hub Labeling for Optimal and Bounded Suboptimal Pathfinding. 33rd International Joint Conference on Artificial Intelligence (IJCAI-24). Jeju, South Korea, 3. Aug. 2024 - 9. Aug. 2024. In: LARSON, Kate, Hrsg.. Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence. IJCAI, 2024, S. 6788-6795. ISBN 978-1-956792-04-1. Verfügbar unter: doi: 10.24963/ijcai.2024/750
BibTex
@inproceedings{Storandt2024-08Scala-71117,
  year={2024},
  doi={10.24963/ijcai.2024/750},
  title={Scalable Landmark Hub Labeling for Optimal and Bounded Suboptimal Pathfinding},
  isbn={978-1-956792-04-1},
  publisher={IJCAI},
  booktitle={Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence},
  pages={6788--6795},
  editor={Larson, Kate},
  author={Storandt, Sabine}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71117">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-05T14:06:42Z</dc:date>
    <dcterms:abstract>Hub Labeling and A* are two well-established algorithms for shortest path computation in large graphs. Hub Labeling offers excellent query times for distance computation, but at the cost of a high space consumption for label storage. Landmark-based A* search requires less space but answers queries much slower. Recently, Landmark Hub Labeling (LHL) has been proposed, which combines both concepts and achieves a smaller space consumption than Hub Labeling and also much better query times than A*. However, the known algorithms for computing a LHL do not scale to large graphs, limiting its applicability. In this paper, we devise novel algorithms for LHL construction that work on graphs with millions of edges. We also further improve the LHL query answering algorithm and investigate how to reduce the space consumption of labeling techniques by performing bounded suboptimal pathfinding. In an extensive experimental study, we demonstrate the effectiveness of our methods and illuminate that sensible trade-offs between space consumption, query time, and path quality can be achieved with LHL.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Scalable Landmark Hub Labeling for Optimal and Bounded Suboptimal Pathfinding</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Storandt, Sabine</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2024-08</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-05T14:06:42Z</dcterms:available>
    <dc:creator>Storandt, Sabine</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71117"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen