ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Named entity recognition (NER) is an important task that aims to resolve universal categories of named entities, e.g., persons, locations, organizations, and times. Despite its common and viable use in many use cases, NER is barely applicable in domains where general categories are suboptimal, such as engineering or medicine. To facilitate NER of domain-specific types, we propose ANEA, an automated (named) entity annotator to assist human annotators in creating domain-specific NER corpora for German text collections when given a set of domain-specific texts. In our evaluation, we find that ANEA automatically identifies terms that best represent the texts’ content, identifies groups of coherent terms, and extracts and assigns descriptive labels to these groups, i.e., annotates text datasets into the domain (named) entities.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZHUKOVA, Anastasia, Felix HAMBORG, Bela GIPP, 2021. ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts. 2nd Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE2021). online, 30. Sept. 2021 - 30. Sept. 2021. In: ZHANG, Chengzhi, ed., Philipp MAYR, ed., Wei LU, ed., Yi ZHANG, ed.. Extraction and Evaluation of Knowledge Entities from Scientific Documents 2021 Proceedings of the 2nd Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE 2021) co-located with JCDL 2021. New York: ACM, 2021, pp. 5-14. CEUR Workshop Proceedings. eISSN 1613-0073BibTex
@inproceedings{Zhukova2021Autom-56902, year={2021}, title={ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts}, url={http://ceur-ws.org/Vol-3004/}, publisher={ACM}, address={New York}, series={CEUR Workshop Proceedings}, booktitle={Extraction and Evaluation of Knowledge Entities from Scientific Documents 2021 Proceedings of the 2nd Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE 2021) co-located with JCDL 2021}, pages={5--14}, editor={Zhang, Chengzhi and Mayr, Philipp and Lu, Wei and Zhang, Yi}, author={Zhukova, Anastasia and Hamborg, Felix and Gipp, Bela} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56902"> <dc:creator>Gipp, Bela</dc:creator> <dc:contributor>Gipp, Bela</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56902"/> <dc:contributor>Zhukova, Anastasia</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts</dcterms:title> <dcterms:abstract xml:lang="eng">Named entity recognition (NER) is an important task that aims to resolve universal categories of named entities, e.g., persons, locations, organizations, and times. Despite its common and viable use in many use cases, NER is barely applicable in domains where general categories are suboptimal, such as engineering or medicine. To facilitate NER of domain-specific types, we propose ANEA, an automated (named) entity annotator to assist human annotators in creating domain-specific NER corpora for German text collections when given a set of domain-specific texts. In our evaluation, we find that ANEA automatically identifies terms that best represent the texts’ content, identifies groups of coherent terms, and extracts and assigns descriptive labels to these groups, i.e., annotates text datasets into the domain (named) entities.</dcterms:abstract> <dc:creator>Hamborg, Felix</dc:creator> <dc:contributor>Hamborg, Felix</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-17T11:05:48Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2021</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-17T11:05:48Z</dc:date> <dc:creator>Zhukova, Anastasia</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>