ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

No Thumbnail Available
Files
There are no files associated with this item.
Date
2021
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Extraction and Evaluation of Knowledge Entities from Scientific Documents 2021 Proceedings of the 2nd Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE 2021) co-located with JCDL 2021 / Zhang, Chengzhi; Mayr, Philipp; Lu, Wei; Zhang, Yi (ed.). - New York : ACM, 2021. - (CEUR Workshop Proceedings). - pp. 5-14. - eISSN 1613-0073
Abstract
Named entity recognition (NER) is an important task that aims to resolve universal categories of named entities, e.g., persons, locations, organizations, and times. Despite its common and viable use in many use cases, NER is barely applicable in domains where general categories are suboptimal, such as engineering or medicine. To facilitate NER of domain-specific types, we propose ANEA, an automated (named) entity annotator to assist human annotators in creating domain-specific NER corpora for German text collections when given a set of domain-specific texts. In our evaluation, we find that ANEA automatically identifies terms that best represent the texts’ content, identifies groups of coherent terms, and extracts and assigns descriptive labels to these groups, i.e., annotates text datasets into the domain (named) entities.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
information extraction, low-resource languages, named entity recognition, domain-specific texts
Conference
2nd Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE2021), Sep 30, 2021 - Sep 30, 2021, online
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690ZHUKOVA, Anastasia, Felix HAMBORG, Bela GIPP, 2021. ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts. 2nd Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE2021). online, Sep 30, 2021 - Sep 30, 2021. In: ZHANG, Chengzhi, ed., Philipp MAYR, ed., Wei LU, ed., Yi ZHANG, ed.. Extraction and Evaluation of Knowledge Entities from Scientific Documents 2021 Proceedings of the 2nd Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE 2021) co-located with JCDL 2021. New York:ACM, pp. 5-14. eISSN 1613-0073
BibTex
@inproceedings{Zhukova2021Autom-56902,
  year={2021},
  title={ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts},
  url={http://ceur-ws.org/Vol-3004/},
  publisher={ACM},
  address={New York},
  series={CEUR Workshop Proceedings},
  booktitle={Extraction and Evaluation of Knowledge Entities from Scientific Documents 2021  Proceedings of the 2nd Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE 2021) co-located with JCDL 2021},
  pages={5--14},
  editor={Zhang, Chengzhi and Mayr, Philipp and Lu, Wei and Zhang, Yi},
  author={Zhukova, Anastasia and Hamborg, Felix and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56902">
    <dc:creator>Gipp, Bela</dc:creator>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56902"/>
    <dc:contributor>Zhukova, Anastasia</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts</dcterms:title>
    <dcterms:abstract xml:lang="eng">Named entity recognition (NER) is an important task that aims to resolve universal categories of named entities, e.g., persons, locations, organizations, and times. Despite its common and viable use in many use cases, NER is barely applicable in domains where general categories are suboptimal, such as engineering or medicine. To facilitate NER of domain-specific types, we propose ANEA, an automated (named) entity annotator to assist human annotators in creating domain-specific NER corpora for German text collections when given a set of domain-specific texts. In our evaluation, we find that ANEA automatically identifies terms that best represent the texts’ content, identifies groups of coherent terms, and extracts and assigns descriptive labels to these groups, i.e., annotates text datasets into the domain (named) entities.</dcterms:abstract>
    <dc:creator>Hamborg, Felix</dc:creator>
    <dc:contributor>Hamborg, Felix</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-17T11:05:48Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2021</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-17T11:05:48Z</dc:date>
    <dc:creator>Zhukova, Anastasia</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
2022-03-17
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed