Publikation:

ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2021

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ZHANG, Chengzhi, ed., Philipp MAYR, ed., Wei LU, ed., Yi ZHANG, ed.. Extraction and Evaluation of Knowledge Entities from Scientific Documents 2021 Proceedings of the 2nd Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE 2021) co-located with JCDL 2021. New York: ACM, 2021, pp. 5-14. CEUR Workshop Proceedings. eISSN 1613-0073

Zusammenfassung

Named entity recognition (NER) is an important task that aims to resolve universal categories of named entities, e.g., persons, locations, organizations, and times. Despite its common and viable use in many use cases, NER is barely applicable in domains where general categories are suboptimal, such as engineering or medicine. To facilitate NER of domain-specific types, we propose ANEA, an automated (named) entity annotator to assist human annotators in creating domain-specific NER corpora for German text collections when given a set of domain-specific texts. In our evaluation, we find that ANEA automatically identifies terms that best represent the texts’ content, identifies groups of coherent terms, and extracts and assigns descriptive labels to these groups, i.e., annotates text datasets into the domain (named) entities.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

information extraction, low-resource languages, named entity recognition, domain-specific texts

Konferenz

2nd Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE2021), 30. Sept. 2021 - 30. Sept. 2021, online
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ZHUKOVA, Anastasia, Felix HAMBORG, Bela GIPP, 2021. ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts. 2nd Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE2021). online, 30. Sept. 2021 - 30. Sept. 2021. In: ZHANG, Chengzhi, ed., Philipp MAYR, ed., Wei LU, ed., Yi ZHANG, ed.. Extraction and Evaluation of Knowledge Entities from Scientific Documents 2021 Proceedings of the 2nd Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE 2021) co-located with JCDL 2021. New York: ACM, 2021, pp. 5-14. CEUR Workshop Proceedings. eISSN 1613-0073
BibTex
@inproceedings{Zhukova2021Autom-56902,
  year={2021},
  title={ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts},
  url={http://ceur-ws.org/Vol-3004/},
  publisher={ACM},
  address={New York},
  series={CEUR Workshop Proceedings},
  booktitle={Extraction and Evaluation of Knowledge Entities from Scientific Documents 2021  Proceedings of the 2nd Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE 2021) co-located with JCDL 2021},
  pages={5--14},
  editor={Zhang, Chengzhi and Mayr, Philipp and Lu, Wei and Zhang, Yi},
  author={Zhukova, Anastasia and Hamborg, Felix and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56902">
    <dc:creator>Gipp, Bela</dc:creator>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56902"/>
    <dc:contributor>Zhukova, Anastasia</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts</dcterms:title>
    <dcterms:abstract xml:lang="eng">Named entity recognition (NER) is an important task that aims to resolve universal categories of named entities, e.g., persons, locations, organizations, and times. Despite its common and viable use in many use cases, NER is barely applicable in domains where general categories are suboptimal, such as engineering or medicine. To facilitate NER of domain-specific types, we propose ANEA, an automated (named) entity annotator to assist human annotators in creating domain-specific NER corpora for German text collections when given a set of domain-specific texts. In our evaluation, we find that ANEA automatically identifies terms that best represent the texts’ content, identifies groups of coherent terms, and extracts and assigns descriptive labels to these groups, i.e., annotates text datasets into the domain (named) entities.</dcterms:abstract>
    <dc:creator>Hamborg, Felix</dc:creator>
    <dc:contributor>Hamborg, Felix</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-17T11:05:48Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2021</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-17T11:05:48Z</dc:date>
    <dc:creator>Zhukova, Anastasia</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

2022-03-17

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen