Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2009
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Numerische Mathematik. 2009, 112(1), pp. 65-87. Available under: doi: 10.1007/s00211-008-0196-0
Zusammenfassung
Combining an asymptotic analysis of the lattice Boltzmann method with a stability estimate, we are able to prove some convergence results which establish a strict relation to the incompressible Navier-Stokes equation. The proof applies to the lattice Boltzmann method in the case of periodic domains and for specific bounded domains if the Dirichlet boundary condition is realized with the bounce back rule.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
JUNK, Michael, Zhaoxia YANG, 2009. Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains. In: Numerische Mathematik. 2009, 112(1), pp. 65-87. Available under: doi: 10.1007/s00211-008-0196-0BibTex
@article{Junk2009Conve-827, year={2009}, doi={10.1007/s00211-008-0196-0}, title={Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains}, number={1}, volume={112}, journal={Numerische Mathematik}, pages={65--87}, author={Junk, Michael and Yang, Zhaoxia} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/827"> <dc:creator>Junk, Michael</dc:creator> <dc:contributor>Junk, Michael</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2009</dcterms:issued> <dcterms:bibliographicCitation>Publ. in: Numerische Mathematik 112 (2009), 1, pp. 65-87</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:01Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/827"/> <dcterms:title>Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Yang, Zhaoxia</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:01Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Yang, Zhaoxia</dc:contributor> <dcterms:abstract xml:lang="eng">Combining an asymptotic analysis of the lattice Boltzmann method with a stability estimate, we are able to prove some convergence results which establish a strict relation to the incompressible Navier-Stokes equation. The proof applies to the lattice Boltzmann method in the case of periodic domains and for specific bounded domains if the Dirichlet boundary condition is realized with the bounce back rule.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja