Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains

No Thumbnail Available
Files
There are no files associated with this item.
Date
2009
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Numerische Mathematik ; 112 (2009), 1. - pp. 65-87
Abstract
Combining an asymptotic analysis of the lattice Boltzmann method with a stability estimate, we are able to prove some convergence results which establish a strict relation to the incompressible Navier-Stokes equation. The proof applies to the lattice Boltzmann method in the case of periodic domains and for specific bounded domains if the Dirichlet boundary condition is realized with the bounce back rule.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690JUNK, Michael, Zhaoxia YANG, 2009. Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains. In: Numerische Mathematik. 112(1), pp. 65-87. Available under: doi: 10.1007/s00211-008-0196-0
BibTex
@article{Junk2009Conve-827,
  year={2009},
  doi={10.1007/s00211-008-0196-0},
  title={Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains},
  number={1},
  volume={112},
  journal={Numerische Mathematik},
  pages={65--87},
  author={Junk, Michael and Yang, Zhaoxia}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/827">
    <dc:creator>Junk, Michael</dc:creator>
    <dc:contributor>Junk, Michael</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2009</dcterms:issued>
    <dcterms:bibliographicCitation>Publ. in: Numerische Mathematik 112 (2009), 1, pp. 65-87</dcterms:bibliographicCitation>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:01Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/827"/>
    <dcterms:title>Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Yang, Zhaoxia</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:01Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Yang, Zhaoxia</dc:contributor>
    <dcterms:abstract xml:lang="eng">Combining an asymptotic analysis of the lattice Boltzmann method with a stability estimate, we are able to prove some convergence results which establish a strict relation to the incompressible Navier-Stokes equation. The proof applies to the lattice Boltzmann method in the case of periodic domains and for specific bounded domains if the Dirichlet boundary condition is realized with the bounce back rule.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed