Publikation:

Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2009

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Numerische Mathematik. 2009, 112(1), pp. 65-87. Available under: doi: 10.1007/s00211-008-0196-0

Zusammenfassung

Combining an asymptotic analysis of the lattice Boltzmann method with a stability estimate, we are able to prove some convergence results which establish a strict relation to the incompressible Navier-Stokes equation. The proof applies to the lattice Boltzmann method in the case of periodic domains and for specific bounded domains if the Dirichlet boundary condition is realized with the bounce back rule.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690JUNK, Michael, Zhaoxia YANG, 2009. Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains. In: Numerische Mathematik. 2009, 112(1), pp. 65-87. Available under: doi: 10.1007/s00211-008-0196-0
BibTex
@article{Junk2009Conve-827,
  year={2009},
  doi={10.1007/s00211-008-0196-0},
  title={Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains},
  number={1},
  volume={112},
  journal={Numerische Mathematik},
  pages={65--87},
  author={Junk, Michael and Yang, Zhaoxia}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/827">
    <dc:creator>Junk, Michael</dc:creator>
    <dc:contributor>Junk, Michael</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2009</dcterms:issued>
    <dcterms:bibliographicCitation>Publ. in: Numerische Mathematik 112 (2009), 1, pp. 65-87</dcterms:bibliographicCitation>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:01Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/827"/>
    <dcterms:title>Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Yang, Zhaoxia</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:01Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Yang, Zhaoxia</dc:contributor>
    <dcterms:abstract xml:lang="eng">Combining an asymptotic analysis of the lattice Boltzmann method with a stability estimate, we are able to prove some convergence results which establish a strict relation to the incompressible Navier-Stokes equation. The proof applies to the lattice Boltzmann method in the case of periodic domains and for specific bounded domains if the Dirichlet boundary condition is realized with the bounce back rule.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen