Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains
Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains
No Thumbnail Available
Files
There are no files associated with this item.
Date
2009
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Numerische Mathematik ; 112 (2009), 1. - pp. 65-87
Abstract
Combining an asymptotic analysis of the lattice Boltzmann method with a stability estimate, we are able to prove some convergence results which establish a strict relation to the incompressible Navier-Stokes equation. The proof applies to the lattice Boltzmann method in the case of periodic domains and for specific bounded domains if the Dirichlet boundary condition is realized with the bounce back rule.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
JUNK, Michael, Zhaoxia YANG, 2009. Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains. In: Numerische Mathematik. 112(1), pp. 65-87. Available under: doi: 10.1007/s00211-008-0196-0BibTex
@article{Junk2009Conve-827, year={2009}, doi={10.1007/s00211-008-0196-0}, title={Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains}, number={1}, volume={112}, journal={Numerische Mathematik}, pages={65--87}, author={Junk, Michael and Yang, Zhaoxia} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/827"> <dc:creator>Junk, Michael</dc:creator> <dc:contributor>Junk, Michael</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2009</dcterms:issued> <dcterms:bibliographicCitation>Publ. in: Numerische Mathematik 112 (2009), 1, pp. 65-87</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:01Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/827"/> <dcterms:title>Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Yang, Zhaoxia</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:01Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Yang, Zhaoxia</dc:contributor> <dcterms:abstract xml:lang="eng">Combining an asymptotic analysis of the lattice Boltzmann method with a stability estimate, we are able to prove some convergence results which establish a strict relation to the incompressible Navier-Stokes equation. The proof applies to the lattice Boltzmann method in the case of periodic domains and for specific bounded domains if the Dirichlet boundary condition is realized with the bounce back rule.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes