Panel Intensity Models with Latent Factors : An Application to the Trading Dynamics on the Foreign Exchange Market
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We develop a panel intensity model, with a time varying latent factor, which captures the influence of unobserved time effects and allows for correlation across individuals. The model is designed to analyze individual trading behavior on the basis of trading activity datasets, which are characterized by four dimensions: an irregularly-spaced time scale, trading activity types, trading instruments and investors. Our approach extends the stochastic conditional intensity model of Bauwens & Hautsch (2006) to panel duration data.
We show how to estimate the model parameters by a simulated maximum likelihood technique adopting the efficient importance sampling approach of Richard & Zhang (2005). We provide an application to a trading activity dataset from an internet trading platform in the foreign exchange market and we find support for the presence of behavioral biases and discuss implications for portfolio theory.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
NOLTE, Ingmar, Valeri VOEV, 2007. Panel Intensity Models with Latent Factors : An Application to the Trading Dynamics on the Foreign Exchange MarketBibTex
@techreport{Nolte2007Panel-12225, year={2007}, series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie}, title={Panel Intensity Models with Latent Factors : An Application to the Trading Dynamics on the Foreign Exchange Market}, number={2007/02}, author={Nolte, Ingmar and Voev, Valeri} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12225"> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12225"/> <dc:format>application/pdf</dc:format> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:title>Panel Intensity Models with Latent Factors : An Application to the Trading Dynamics on the Foreign Exchange Market</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:43:36Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:43:36Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12225/1/dp07_02.pdf"/> <dcterms:issued>2007</dcterms:issued> <dc:creator>Nolte, Ingmar</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:contributor>Voev, Valeri</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12225/1/dp07_02.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Nolte, Ingmar</dc:contributor> <dc:creator>Voev, Valeri</dc:creator> <dcterms:abstract xml:lang="eng">We develop a panel intensity model, with a time varying latent factor, which captures the influence of unobserved time effects and allows for correlation across individuals. The model is designed to analyze individual trading behavior on the basis of trading activity datasets, which are characterized by four dimensions: an irregularly-spaced time scale, trading activity types, trading instruments and investors. Our approach extends the stochastic conditional intensity model of Bauwens & Hautsch (2006) to panel duration data.<br />We show how to estimate the model parameters by a simulated maximum likelihood technique adopting the efficient importance sampling approach of Richard & Zhang (2005). We provide an application to a trading activity dataset from an internet trading platform in the foreign exchange market and we find support for the presence of behavioral biases and discuss implications for portfolio theory.</dcterms:abstract> </rdf:Description> </rdf:RDF>